



# DESARROLLAR EL ALCANCE TÉCNICO DE LA REGLAMENTACIÓN DEL USO DE LAS AGUAS DEL RÍO **APARTADÓ Y PRINCIPALES TRIBUTARIOS**

**CAPÍTULO 3: OFERTA HÍDRICA TOTAL Y CAUDAL AMBIENTAL** 

PHMet - Proyectos Hidrometeorológicos S.A.S. NIT: 900.689.679-2





## **TABLA DE CONTENIDO**

| 3. | OF  | ERT     | A HÍDRICA TOTAL Y CAUDAL AMBIENTAL                            | 6  |
|----|-----|---------|---------------------------------------------------------------|----|
|    | 3.1 | ΑN      | IÁLISIS DE LA INFORMACIÓN HIDROLÓGICA EXISTENTE               | 7  |
|    | 3.2 | AN<br>9 | IÁLISIS DE HOMOGENEIDAD RETOMADO DEL PORH DEL RÍO APARTA      | DÓ |
|    | 3.2 | .1      | Resultados obtenidos al presentarse cambios en la varianza    | 9  |
|    | 3.2 | .2      | Resultados obtenidos al presentarse cambios en la media       | 10 |
|    | 3.2 | .3      | Resultados obtenidos al presentarse tendencia en la media     | 11 |
|    | 3.2 | .4      | Detección de datos anómalos «outliers»                        | 12 |
|    | 3.3 | ΑN      | IÁLISIS DE VARIABILIDAD CLIMÁTICA                             | 13 |
|    | 3.4 | ВА      | LANCE HIDROCLIMÁTICO                                          | 14 |
|    | 3.4 | .1      | Balance hídrico de Largo Plazo                                | 14 |
|    | 3.4 | .2      | Precipitación media anual                                     | 15 |
|    | 3.4 | .3      | Estimación de los campos de evapotranspiración                | 17 |
|    | 3.5 | MC      | DDELO LLUVIA ESCORRENTÍA                                      | 20 |
|    | 3.5 | .1      | Descripción del Modelo                                        | 20 |
|    | 3.5 | .2      | Información de entrada                                        | 22 |
|    | 3.5 | .3      | Parámetros y calibración del modelo                           | 22 |
|    | 3.5 | .4      | Resultados de la calibración                                  | 24 |
|    | 3.5 | .5      | Validación de los resultados de los parámetros de calibración | 25 |
|    | 3.6 | SIN     | MULACIÓN DE SERIES DE CAUDALES MEDIOS DIARIOS                 | 25 |
|    | 3.6 | .1      | Influencia de las estaciones de precipitación                 | 26 |
|    | 3.6 | .2      | Parámetros de simulación                                      | 30 |
|    | 3.7 | OF      | ERTA HÍDRICA TOTAL                                            | 33 |
|    | 3.8 | ÍNE     | DICE DE ARIDEZ E ÍNDICE DE RETENCIÓN Y REGULACIÓN HÍDRICA     | 33 |
|    | 3.8 | .1      | Índices de retención y regulación                             | 33 |
|    | 3.8 | .2      | Índice de Aridez                                              | 35 |
|    | 3.9 | CA      | UDAL AMBIENTAL                                                | 37 |
|    |     |         |                                                               |    |





|   | 3.9.1  | Caudales ambientales según la Resolución 865 de 2004                                | 37 |
|---|--------|-------------------------------------------------------------------------------------|----|
|   |        | Estimación de los caudales ambientales según la propuesta del al de Agua – ENA-2010 |    |
|   | 3.9.3  | Índices hidrológicos 7Q10 y Q95%                                                    | 37 |
| 3 | .10 CA | UDALES MÍNIMOS                                                                      | 41 |
| 3 | 11 DIS | SPONIBILIDAD HÍDRICA                                                                | 43 |







## **LISTA DE TABLAS**

| Tabla 3-1. Estaciones hidrometeorológicas ubicas dentro o en las cercanías de la zona de estudio                       |
|------------------------------------------------------------------------------------------------------------------------|
| Tabla 3-2. Estaciones Hidrometeorológicas seleccionadas para la calibración y validación del modelo lluvia escorrentía |
| Tabla 3-3. Resultados del análisis de estabilidad en la varianza                                                       |
| Tabla 3-4. Resultados de análisis de cambio en la media                                                                |
| Tabla 3-5. Resultados de análisis de estabilidad en la media                                                           |
| Tabla 3-6. Resultados del análisis en la detección de «outliers»                                                       |
| Tabla 3-7. Intervalos aproximados de variación de los parámetros hidráulicos del modelo                                |
| Tabla 3-8. Rango de variación de otros parámetros del modelo de tanques                                                |
| Tabla 3-9. Condiciones iniciales usadas en cada uno de los tanques                                                     |
| Tabla 3-10. Parámetros de calibración                                                                                  |
| Tabla 3-11. Indicadores de calibración del modelo de tanques                                                           |
| Tabla 3-12. Definición de los usuarios de la cuenca del río Apartadó                                                   |
| Tabla 3-13. Codificación y subcuencas del río Apartadó                                                                 |
| Tabla 3-14. Parámetros de interpolación de lluvia para modelo de tanques para los usuarios                             |
| del río Apartadó                                                                                                       |
| Tabla 3-15. Parámetros de interpolación de lluvia para modelo de tanques para las                                      |
| subcuencas del río Apartadó                                                                                            |
| Tabla 3-16. Caudales promedio a partir de las series sintéticas para los usuarios de la                                |
| cuenca del río Apartadó                                                                                                |
| Tabla 3-17. Caudales promedio a partir de las series sintéticas para las subcuencas del río                            |
| Apartadó                                                                                                               |
| Tabla 3-18. IRH de los usuarios del río Apartadó                                                                       |
| Tabla 3-19. IRH de las subcuencas del río Apartadó                                                                     |
| Tabla 3-20. Caudales ambientales para los usuarios de la cuenca del río Apartadó 40                                    |
| Tabla 3-21. Caudales ambientales para las subcuencas del río Apartadó                                                  |
| Tabla 3-22. Caudales mínimos (en LPS) para los usuarios de la cuenca del río Apartadó                                  |
| Tabla 3-23. Caudales mínimos (en LPS) para las subcuencas del río Apartadó                                             |
| Tabla 3-24. Oferta disponible para las subcuencas del río Apartadó                                                     |
| Tabla 3-25. Oferta disponible para los usuarios del río Apartadó                                                       |
| Tabla 3-23. Oferta disportible para los usuarios del 110 Apartado43                                                    |
|                                                                                                                        |
| LISTA DE FIGURAS                                                                                                       |
| Figura 3-1. Localización Estaciones Hidrometeorológicas en las cercanías de la cuenca del                              |
| río Apartadó                                                                                                           |
| Figura 3-2. Efecto de la variabilidad climática sobre los caudales en el río Apartadó 14                               |
| Figura 3-3. Esquema de Balance hídrico para una cuenca                                                                 |
| Figura 3-4. Mapa de precipitación para la cuenca del río Apartadó                                                      |
| Figura 3-5. Validación del modelo de balance hídrico para la zona de estudio                                           |
| rigara o o. validación del modelo de balanos muntos para la zona de estudio                                            |





| Figura 3-6. Mapa de Evapotranspiración real, ETR, para la zona de estudio             | 19     |
|---------------------------------------------------------------------------------------|--------|
| Figura 3-7. Descripción conceptual del modelo de tanques agregado lineal (Vélez J., 2 | 2001)  |
|                                                                                       | 21     |
| Figura 3-8. Curva de duración de caudales estación 12017060 Apartadó                  | 24     |
| Figura 3-9. Serie de caudales observados y simulados estación 12017060 Apartadó       | 25     |
| Figura 3-10. Polígonos de Thiessen la influencia de precipitación para el Modelo L    | luvia- |
| Escorrentía                                                                           | 27     |
| Figura 3-11. Esquema cálculo del índice de regulación y retención hídrica, IRH        | 34     |
| Figura 3-12. Índice de Aridez, IA, para la zona de estudio                            | 36     |
| Figura 2-13 Proporción caudal ambiental y eferta hídrica total                        | 30     |







#### 3. OFERTA HÍDRICA TOTAL Y CAUDAL AMBIENTAL

La caracterización de la oferta hídrica en la cuenca del río Apartadó se fundamenta en información hidrometeorológica representativa de la zona. El propósito central es definir la oferta del recurso agua para la cuenca del río Apartadó y usuarios del recurso hídrico. Para lograr este propósito se empleará un modelo lluvia escorrentía, derivando la oferta hídrica total en cualquier punto de interés de la cuenca de estudio. El modelo lluvia escorrentía empleado será el modelo de Tanques, retomado del PORH río Apartadó 2014, generando 29 años de caudales diarios representados por medio de series sintéticas para cada uno de los puntos de interés en la cuenca del río Apartadó.

Se identificaron en total 23 usuarios, correspondiendo a 24 unidades de análisis con la inclusión del río Apartadó. Los resultados de las series sintéticas nos permiten estudiar la oferta hídrica en diferentes condiciones hidrológicas de la cuenca, como condiciones húmedas, secas o normales. En adición, se construye la curva de duración de caudales a partir de las series sintéticas de caudales diarios. Logrando describir más ampliamente la estructura de los caudales en función de sus frecuencias de excedencia en el tiempo.

En adición se realiza la estimación de los caudales ambientales en los mismos puntos de monitoreo definidos en el modelo lluvia escorrentía. Las metodologías empleadas para el cálculo de los caudales ambientales están basadas en la Resolución 865 del 2004, ENA 2010 y los índices Hidrológicos 7Q10 y Q95%. Estos tres resultados nos permiten contrastar los diferentes enfoques para la estimación de caudales ambientales y poder así seleccionar el más representativo para la cuenca de estudio. Finalmente, los resultados del modelo lluvia escorrentía y caudales ambientales, nos permiten definir la oferta disponible en el punto de captación de usuarios de la cuenca del río Apartadó.







## 3.1 ANÁLISIS DE LA INFORMACIÓN HIDROLÓGICA EXISTENTE

Para la calibración y validación del modelo de tanques realizado en el PORH del río Apartadó se seleccionaron y depuraron estaciones hidrometeorológicas a cercanías de la cuenca (Figura 3-1). En la Tabla 3-1 se enlistan las estaciones consideradas dentro del PORH.

Tabla 3-1. Estaciones hidrometeorológicas ubicas dentro o en las cercanías de la zona de estudio

| Código<br>11120040<br>11130010<br>11150020<br>12010030<br>12010050<br>12010060<br>12010070<br>12010090<br>12010100<br>12010110 | Nombre  RIOSUCIO UNGUIA TANELA BARRANQUILLITA TOSCANA LA LORENA LA CASCO EL TRIGANA EUPOL | PM<br>PM<br>PM<br>PM<br>PM<br>PM<br>PM | Este<br>664509<br>668006<br>673351<br>710772<br>710314<br>711887 | Norte<br>1315572<br>1381698<br>1395635<br>1329857<br>1356098 | Inicio<br>1969<br>1974<br>1974<br>1974<br>1977 | Fin<br>2016<br>2016<br>2015<br>2016 | (años)<br>48<br>43<br>42<br>43 |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|-------------------------------------|--------------------------------|
| 11130010<br>11150020<br>12010030<br>12010050<br>12010060<br>12010070<br>12010090<br>12010100                                   | UNGUIA TANELA BARRANQUILLITA TOSCANA LA LORENA LA CASCO EL TRIGANA                        | PM<br>PM<br>PM<br>PM<br>PM             | 668006<br>673351<br>710772<br>710314                             | 1381698<br>1395635<br>1329857                                | 1974<br>1974<br>1974                           | 2016<br>2015<br>2016                | 43<br>42                       |
| 11150020<br>12010030<br>12010050<br>12010060<br>12010070<br>12010090<br>12010100                                               | TANELA BARRANQUILLITA TOSCANA LA LORENA LA CASCO EL TRIGANA                               | PM<br>PM<br>PM<br>PM                   | 673351<br>710772<br>710314                                       | 1395635<br>1329857                                           | 1974<br>1974                                   | 2015<br>2016                        | 42                             |
| 12010030<br>12010050<br>12010060<br>12010070<br>12010090<br>12010100                                                           | BARRANQUILLITA TOSCANA LA LORENA LA CASCO EL TRIGANA                                      | PM<br>PM<br>PM                         | 710772<br>710314                                                 | 1329857                                                      | 1974                                           | 2016                                |                                |
| 12010050<br>12010060<br>12010070<br>12010090<br>12010100                                                                       | TOSCANA LA<br>LORENA LA<br>CASCO EL<br>TRIGANA                                            | PM<br>PM<br>PM                         | 710314                                                           |                                                              |                                                |                                     | 43                             |
| 12010060<br>12010070<br>12010090<br>12010100                                                                                   | LORENA LA<br>CASCO EL<br>TRIGANA                                                          | PM<br>PM                               |                                                                  | 1356098                                                      | 1077                                           |                                     |                                |
| 12010070<br>12010090<br>12010100                                                                                               | CASCO EL<br>TRIGANA                                                                       | PM                                     | 711887                                                           |                                                              |                                                | 2016                                | 40                             |
| 12010090<br>12010100                                                                                                           | TRIGANA                                                                                   |                                        |                                                                  | 1362178                                                      | 1977                                           | 2016                                | 40                             |
| 12010100                                                                                                                       |                                                                                           |                                        | 716471                                                           | 1364507                                                      | 1977                                           | 2016                                | 40                             |
|                                                                                                                                | EUPOL                                                                                     | PM                                     | 709301                                                           | 1349418                                                      | 1977                                           | 2016                                | 40                             |
| 12010110                                                                                                                       |                                                                                           | PM                                     | 719868                                                           | 1371250                                                      | 1977                                           | 2016                                | 40                             |
|                                                                                                                                | PRADO MAR                                                                                 | PM                                     | 717568                                                           | 1375903                                                      | 1977                                           | 2016                                | 40                             |
| 12010120                                                                                                                       | STA MARTHA                                                                                | PM                                     | 716355                                                           | 1368870                                                      | 1977                                           | 2015                                | 39                             |
| 12020010                                                                                                                       | PUEBLO BELLO                                                                              | PM                                     | 730270                                                           | 1399825                                                      | 1991                                           | 2016                                | 26                             |
| 13030010                                                                                                                       | TIERRALTA                                                                                 | PM                                     | 782263                                                           | 1397602                                                      | 1972                                           | 2016                                | 45                             |
| 12010160 SA                                                                                                                    | AN JOSE APARTADÓ                                                                          | PG                                     | 721735                                                           | 1362516                                                      | 1984                                           | 1997                                | 14                             |
| 12010180 C                                                                                                                     | CHOROMANDO HDA                                                                            | PG                                     | 723634                                                           | 1371726                                                      | 1984                                           | 1996                                | 13                             |
| 13030030                                                                                                                       | URRA 1                                                                                    | PG                                     | 762274                                                           | 1375194                                                      | 1984                                           | 2005                                | 22                             |
| 13020020                                                                                                                       | CIELO EL                                                                                  | PM                                     | 741998                                                           | 1367932                                                      | 1973                                           | 2002                                | 30                             |
| 13040010                                                                                                                       | QUIMARI                                                                                   | PM                                     | 751293                                                           | 1384483                                                      | 1973                                           | 2003                                | 31                             |
| 13020010                                                                                                                       | DESPENSA LA                                                                               | PM                                     | 754856                                                           | 1364165                                                      | 1970                                           | 1990                                | 21                             |
| 12010020                                                                                                                       | PALMERA LA                                                                                | PM                                     | 720902                                                           | 1326166                                                      | 1972                                           | 1991                                | 20                             |
| 12010080                                                                                                                       | STA ISABEL                                                                                | PM                                     | 714293                                                           | 1349641                                                      | 1977                                           | 1994                                | 18                             |
| 13020040                                                                                                                       | SAIZA                                                                                     | PM                                     | 734512                                                           | 1343988                                                      | 1990                                           | 2000                                | 11                             |
| 12010010                                                                                                                       | TORMENTO EL                                                                               | PM                                     | 693481                                                           | 1351588                                                      | 1972                                           | 2016                                | 45                             |
| 13040030                                                                                                                       | PEZVAL                                                                                    | PM                                     | 769509                                                           | 1406025                                                      | 1990                                           | 2015                                | 26                             |
| 12010170                                                                                                                       | NUEVO ORIENTE                                                                             | PG                                     | 711576                                                           | 1317589                                                      | 1991                                           | 2016                                | 26                             |
| 12015010                                                                                                                       | VILLARTEAGA                                                                               | CO                                     | 734298                                                           | 1305247                                                      | 1972                                           | 2016                                | 45                             |
| 12015020                                                                                                                       | UNIBAN                                                                                    | AM                                     | 716045                                                           | 1358033                                                      | 1977                                           | 2016                                | 40                             |
| 12015070 A                                                                                                                     | APTO LOS CEDROS                                                                           | SP                                     | 708686                                                           | 1357027                                                      | 1983                                           | 2016                                | 34                             |
| 13015030                                                                                                                       | CAMPO BELLO                                                                               | CP                                     | 762274                                                           | 1375194                                                      | 1996                                           | 2004                                | 9                              |
| 11117040                                                                                                                       | MUTATÀ                                                                                    | LG                                     | 739223                                                           | 1291872                                                      | 1976                                           | 2014                                | 39                             |
| 11147020                                                                                                                       | BAJIRA                                                                                    | LG                                     | 707345                                                           | 1307436                                                      | 1997                                           | 2015                                | 19                             |
| 12017070                                                                                                                       | CERRAZON LA                                                                               | LG                                     | 724245                                                           | 1346360                                                      | 1987                                           | 2014                                | 28                             |
| 12017100                                                                                                                       | VILLARTEAGA                                                                               | LG                                     | 721486                                                           | 1312314                                                      | 1990                                           | 2015                                | 26                             |
| 13047030                                                                                                                       | TIERRALTA                                                                                 | LG                                     | 780995                                                           | 1397653                                                      | 1992                                           | 2010                                | 19                             |
| 12027010                                                                                                                       | PUEBLO BELLO                                                                              | LM                                     | 730270                                                           | 1399814                                                      | 1977                                           | 2014                                | 38                             |
| 12017010                                                                                                                       | CHIGORODÓ                                                                                 | LM                                     | 712342                                                           | 1341140                                                      | 1976                                           | 2012                                | 37                             |
|                                                                                                                                | BARRANQUILLITA                                                                            | LM                                     | 709325                                                           | 1329921                                                      | 1977                                           | 2015                                | 39                             |
| 12017040                                                                                                                       | RIOGRANDE                                                                                 | LM                                     | 719448                                                           | 1369294                                                      | 1978                                           | 2015                                | 38                             |
|                                                                                                                                | CARRIZOLA AUTOM                                                                           | LM                                     | 777563                                                           | 1394759                                                      | 1993                                           | 2015                                | 23                             |

Fuente: PORH río Apartadó 2014.





Figura 3-1. Localización Estaciones Hidrometeorológicas en las cercanías de la cuenca del río Apartadó



Para la construcción del modelo lluvia escorrentía dentro del PORH se seleccionó la estación limnimétrica Apartadó (12017060) y las estaciones pluviométricas El Casco (12010070) y La Lorena (12010060). Las estaciones seleccionadas para el modelo lluvia escorrentía se presentan en la Tabla 3-2.

Tabla 3-2. Estaciones Hidrometeorológicas seleccionadas para la calibración y validación del modelo Iluvia escorrentía

|             | navia cocorronta     |                 |             |           |  |  |  |  |
|-------------|----------------------|-----------------|-------------|-----------|--|--|--|--|
| Código Cat  |                      | Nombre estación | Año inicial | Año final |  |  |  |  |
| 12017060    | 12017060 LM Apartadó |                 | 1984        | 2012      |  |  |  |  |
| 12010070    | PM                   | El Casco        | 1977        | 2016      |  |  |  |  |
| 12010060 PM |                      | La Lorena       | 1977        | 2016      |  |  |  |  |

Fuente: PORH río Apartadó 2014.

Las estaciones de precipitación y caudal identificadas para calibrar y validar el modelo lluvia escorrentía fueron sometidas a un análisis de homogeneidad y calidad de la información hidrológica. Para tal efecto se propuso efectuar los análisis de consistencia, homogeneidad y calidad de los registros diarios disponibles en la cuenca. Para tal efecto se retomarán los resultados del PORH del río Apartadó, resumidos a continuación:





#### 3.2 ANÁLISIS DE HOMOGENEIDAD RETOMADO DEL PORH DEL RÍO APARTADÓ

El análisis y modelación de registros hidrológicos a menudo asume que los datos se rigen por la hipótesis de estacionariedad, que implica que la función de distribución de probabilidades no cambia con el tiempo (Poveda & Álvarez, 2012), sin embargo, se sabe que sí existen cambios y/o tendencias en los datos, lo que sugiere el colapso de la hipótesis planteada. Por lo anterior se requiere identificar las variaciones de cada una de las series de precipitación antes de desarrollar cualquier otro tipo de análisis.

El análisis de homogeneidad se realiza para verificar la calidad de la información disponible, consiste en calcular estadísticos de prueba para la media y la varianza del conjunto de datos y posteriormente compararlos con valores críticos teóricos correspondientes a determinadas funciones de distribución de probabilidad, según la prueba usada.

Cuando se observa un cambio significativo en la magnitud de la media de determinada variable, se pueden presentar dos casos: si el cambio es positivo significa que hay incremento en el nivel de la media y si es negativo indica una disminución. Las pruebas estadísticas utilizadas son: la prueba T simple, T modificada y suma de rangos de Wilcoxon o Mann – Whitney; para detectar una posible tendencia en la media de un registro de datos se utiliza la prueba T y para identificar cambios en la varianza se recurre a las pruebas F simple, F modificada y la Ansari - Bradley.

El procedimiento general consiste en verificar si existe un cambio en la varianza de los registros según el resultado de las pruebas, se continúa con el análisis de cambio en la media (la prueba F simple se usa para elegir el estadístico para la prueba T simple, la prueba F modificada se usa para elegir el estadístico para la prueba T modificada), en caso de existir un cambio en la media éste procede a ser removido, ajustando la media de los valores posteriores al salto.

El análisis se practica a escala anual, debido a que la variabilidad intra-anual de la precipitación puede hacer incurrir las pruebas en un error tipo 2, rechazar la hipótesis de homogeneidad sin que en realidad haya cambios significativos en los estadísticos; el análisis se realiza sobre las series reconstruidas y sólo para el periodo de reconstrucción debido a la necesidad de tener los registros completos y consecutivos. Se considera un número significativo de datos (la cantidad de datos mínimos de cada sub-serie sometida al análisis) de 5 años, en el tramo inicial y en el tramo final de las series.

### 3.2.1 Resultados obtenidos al presentarse cambios en la varianza

Para realizar el análisis de homogeneidad se continuó con la agrupación de estaciones que se determinó con anterioridad. A continuación, en la Tabla 3-3 se consignan los resultados





obtenidos tras realizar las 3 pruebas de hipótesis en los registros de precipitación de las estaciones.

En caso de obtener «Rechaza» significa que la prueba rechaza la hipótesis nula y la diferencia entre varianzas es diferente de cero, por el contrario, si se «Acepta» es un indicador de que la prueba no rechaza la hipótesis nula y existe homogeneidad o igualdad de varianzas. En el caso de que por lo menos dos estaciones coinciden en «Rechaza», significa que la serie de datos en estudio es no homogénea en su varianza y se presenta el año de máximo cambio, en caso contrario sí existe igualdad. Los resultados obtenidos se muestran en la Tabla 3-3.

Tabla 3-3. Resultados del análisis de estabilidad en la varianza

| Cádigo   | Estación        | Periodo     | F       | F          | Ansary  | Año    |
|----------|-----------------|-------------|---------|------------|---------|--------|
| Código   | ESIACION        | análisis    | simple  | modificada | Bradley | cambio |
| 12020010 | Pueblo Bello    | 1972 - 2015 | Acepta  | Acepta     | Acepta  |        |
| 13020010 | La Despensa     | 1972 - 1990 | Acepta  | Acepta     | Acepta  |        |
| 13020020 | El Cielo        | 1973 - 2002 | Acepta  | Acepta     | Acepta  |        |
| 13030010 | Tierralta       | 1972 - 2015 | Rechaza | Acepta     | Acepta  |        |
| 13040010 | Quimari         | 1973 - 2003 | Rechaza | Acepta     | Acepta  |        |
| 13040030 | Pezval          | 1990 - 2015 | Rechaza | Acepta     | Acepta  |        |
| 11120040 | Riosucio        | 1975 - 2015 | Rechaza | Acepta     | Acepta  |        |
| 11130010 | Unguia          | 1974 - 2015 | Rechaza | Rechaza    | Acepta  | 2001   |
| 11150020 | Tanela          | 1974 - 2015 | Rechaza | Rechaza    | Acepta  | 2002   |
| 12010010 | El Tormento     | 1972 - 2015 | Rechaza | Acepta     | Acepta  |        |
| 12010020 | La Palmera      | 1972 - 1991 | Acepta  | Acepta     | Acepta  |        |
| 12010030 | Barranquillita  | 1974 - 2015 | Acepta  | Acepta     | Acepta  |        |
| 12010170 | Nuevo Oriente   | 1991 - 2015 | Acepta  | Acepta     | Acepta  |        |
| 12015010 | Villarteaga     | 1972 - 2015 | Acepta  | Acepta     | Acepta  |        |
| 12010050 | La Toscana      | 1977 – 2015 | Acepta  | Acepta     | Acepta  | -      |
| 12010060 | La Lorena       | 1977 – 2015 | Rechaza | Acepta     | Acepta  |        |
| 12010070 | El Casco        | 1977 – 2015 | Acepta  | Acepta     | Acepta  |        |
| 12010080 | Sta Isabel      | 1977 – 1994 | Rechaza | Rechaza    | Acepta  | 1984   |
| 12010090 | Trigana         | 1977 – 2015 | Acepta  | Acepta     | Acepta  |        |
| 12010100 | Eupol           | 1977 – 2015 | Acepta  | Acepta     | Acepta  |        |
| 12010110 | Prado Mar       | 1977 – 2015 | Acepta  | Acepta     | Acepta  |        |
| 12010120 | Sta Martha      | 1977 – 2015 | Acepta  | Acepta     | Acepta  |        |
| 12015020 | Uniban          | 1977 - 2015 | Rechaza | Acepta     | Acepta  |        |
| 12015070 | Apto Los Cedros | 1983 - 2015 | Rechaza | Rechaza    | Acepta  | 1991   |

Fuente: PORH río Apartadó 2014.

### 3.2.2 Resultados obtenidos al presentarse cambios en la media

Similar al literal anterior se desarrollan los 3 test estadísticos ya descritos con el fin de determinar cuál de estos «Acepta» o «Rechaza» la hipótesis nula, y posteriormente inferir si existe estabilidad o no en el valor de la media. En caso de que dos o más pruebas localicen un cambio se asume que este es significativo y se presenta el año de ocurrencia. Los resultados se presentan en la Tabla 3-4.

Tabla 3-4. Resultados de análisis de cambio en la media

| Código   | Estación     | Periodo     | Т       | Т          | Wilcoxon | Año              |
|----------|--------------|-------------|---------|------------|----------|------------------|
|          |              | análisis    | simple  | modificada |          | cambio           |
| 12020010 | Pueblo Bello | 1972 - 2015 | Rechaza | Acepta     | Rechaza  | 1992             |
| 13020010 | La Despensa  | 1972 - 1990 | Acepta  | Acepta     | Acepta   | - S 7 TT 1 D C 1 |





| Código   | Estación        | Periodo     | Т       | Т          | Wilcoxon | Año    |
|----------|-----------------|-------------|---------|------------|----------|--------|
| _        |                 | análisis    | simple  | modificada |          | cambio |
| 13020020 | El Cielo        | 1973 - 2002 | Acepta  | Rechaza    | Acepta   |        |
| 13030010 | Tierralta       | 1972 - 2015 | Rechaza | Rechaza    | Acepta   | 1986   |
| 13040010 | Quimari         | 1973 - 2003 | Acepta  | Acepta     | Acepta   |        |
| 13040030 | Pezval          | 1990 - 2015 | Rechaza | Rechaza    | Rechaza  | 1995   |
| 11120040 | Riosucio        | 1975 - 2015 | Rechaza | Rechaza    | Rechaza  | 1996   |
| 11130010 | Unguia          | 1974 - 2015 | Acepta  | Acepta     | Rechaza  |        |
| 11150020 | Tanela          | 1974 - 2015 | Rechaza | Acepta     | Rechaza  | 2004   |
| 12010010 | El Tormento     | 1972 - 2015 | Rechaza | Rechaza    | Acepta   | 2005   |
| 12010020 | La Palmera      | 1972 - 1991 | Acepta  | Acepta     | Acepta   |        |
| 12010030 | Barranquillita  | 1974 - 2015 | Rechaza | Acepta     | Rechaza  | 2006   |
| 12010170 | Nuevo Oriente   | 1991 - 2015 | Acepta  | Acepta     | Acepta   |        |
| 12015010 | Villarteaga     | 1972 - 2015 | Rechaza | Rechaza    | Rechaza  | 2004   |
| 12010050 | La Toscana      | 1977 - 2015 | Rechaza | Rechaza    | Rechaza  | 1995   |
| 12010060 | La Lorena       | 1977 - 2015 | Rechaza | Rechaza    | Rechaza  | 1994   |
| 12010070 | El Casco        | 1977 - 2015 | Acepta  | Rechaza    | Acepta   |        |
| 12010080 | Sta Isabel      | 1977 - 1994 | Rechaza | Rechaza    | Rechaza  | 1984   |
| 12010090 | Trigana         | 1977 - 2015 | Acepta  | Acepta     | Acepta   |        |
| 12010100 | Eupol           | 1977 - 2015 | Acepta  | Acepta     | Acepta   |        |
| 12010110 | Prado Mar       | 1977 - 2015 | Acepta  | Acepta     | Acepta   |        |
| 12010120 | Sta Martha      | 1977 - 2015 | Rechaza | Rechaza    | Rechaza  | 1986   |
| 12015020 | Uniban          | 1977 - 2015 | Rechaza | Rechaza    | Rechaza  | 1992   |
| 12015070 | Apto Los Cedros | 1983 - 2015 | Rechaza | Rechaza    | Rechaza  | 1992   |

#### 3.2.3 Resultados obtenidos al presentarse tendencia en la media

Se dice que una serie presenta tendencia en la media cuando se presenta un cambio progresivo y gradual en la magnitud o el nivel en este parámetro. Esta tendencia puede ser positiva si hay un incremento gradual de la magnitud de la media o negativa si ocurre lo contrario. A continuación, se detalla si existe una tendencia general para el registro de datos, en caso de que dicha tendencia exista y de haberse identificado un cambio en la media se procede a determinar si la tendencia se conserva en los tramos antes y después del cambio. Los resultados de tendencia en la media se presentan en la Tabla 3-5.

Tabla 3-5. Resultados de análisis de estabilidad en la media.

| Código   | Estación       | Prueba de tendencias |         |         |
|----------|----------------|----------------------|---------|---------|
|          |                | General              | Tramo 1 | Tramo 2 |
| 12020010 | Pueblo Bello   | No                   |         |         |
| 13020010 | La Despensa    | No                   |         |         |
| 13020020 | El Cielo       | No                   |         |         |
| 13030010 | Tierralta      | No                   |         |         |
| 13040010 | Quimari        | No                   |         |         |
| 13040030 | Pezval         | No                   |         |         |
| 11120040 | Riosucio       | Sí                   | No      | No      |
| 11130010 | Unguia         | No                   |         |         |
| 11150020 | Tanela         | No                   |         |         |
| 12010010 | El Tormento    | No                   |         |         |
| 12010020 | La Palmera     | No                   |         |         |
| 12010030 | Barranquillita | No                   |         |         |
| 12010170 | Nuevo Oriente  | No                   |         |         |
| 12015010 | Villarteaga    | Sí                   | No      | No      |
| 12010050 | La Toscana     | No                   |         |         |
| 12010060 | La Lorena      | Sí                   | No      | No      |
| 12010070 | El Casco       | No                   |         |         |





| 12010080 | Sta. Isabel     | No | <br> |
|----------|-----------------|----|------|
| 12010090 | Trigana         | No | <br> |
| 12010100 | Eupol           | No | <br> |
| 12010110 | Prado Mar       | No | <br> |
| 12010120 | Sta. Martha     | No | <br> |
| 12015020 | Uniban          | No | <br> |
| 12015070 | Apto Los Cedros | No | <br> |

#### 3.2.4 Detección de datos anómalos «outliers»

Los puntos anormalmente extremos u «outliers» son observaciones que se separan de la tendencia general de una serie de datos, pueden ser valores máximos o mínimos localizados por encima o por debajo de la media, incluirlos sin una identificación previa puede llevar a errores de distorsión en la construcción de curvas de frecuencia (Fattorelli & Fernández, 2011). En ocasiones pueden ser causados por errores de medida, calibración o avería de los instrumentos, fenómenos naturales, entre otros.

En este caso se emplean 3 métodos para identificar su existencia: método de detección «de puntos por fuera del rango», método del rango normalizado «rangos normales» y método de «prueba del rango» o Dixon simplificado. Tras la aplicación de cada uno de los métodos descritos en los registros de precipitación según la agrupación con antelación definida y en los registros de caudales que se encuentran dentro de las cuencas de interés. En la Tabla 3-6 se presenta la conclusión que arroja cada método; en caso de que por lo menos dos pruebas detecten «outlier» se procede a identificar el año en que ocurre. Los resultados del análisis de detección de outliers se presentan en la Tabla 3-6.

Tabla 3-6. Resultados del análisis en la detección de «outliers»

|          | Período        |             | Métodos         |                 |                 |      |
|----------|----------------|-------------|-----------------|-----------------|-----------------|------|
| Código   | Estación       | análisis    | Puntos          | Rango           | Dixon           | Año  |
| _        |                | anansis     | fuera rango     | normalizado     | simplificado    |      |
| 13040030 | Pezval         | 1990 - 2015 | No hay outlier  | No hay outlier  | No hay outlier  |      |
| 13040010 | Quimari        | 1973 - 2003 | No hay outlier  | No hay outlier  | No hay outlier  |      |
| 13030010 | Tierralta      | 1972 - 2015 | Hay outlier     | No hay outlier  | No hay outlier  |      |
| 13020020 | El Cielo       | 1973 - 2002 | No hay outlier  | No hay outlier  | No hay outlier  |      |
| 13020010 | La Despensa    | 1972 - 1990 | No hay outlier  | No hay outlier  | No hay outlier  |      |
| 12020010 | Pueblo Bello   | 1972 - 2015 | No hay outlier  | No hay outlier  | No hay outlier  |      |
| 11120040 | Riosucio       | 1975 - 2015 | No hay outliers | No hay outliers | No hay outliers |      |
| 11130010 | Unguia         | 1974 - 2015 | Hay outliers    | Hay outliers    | Hay outliers    | 2001 |
| 11150020 | Tanela         | 1974 - 2015 | Hay outliers    | Hay outliers    | Hay outliers    | 2006 |
| 12010010 | El Tormento    | 1972 - 2015 | No hay outliers | No hay outliers | No hay outliers |      |
| 12010020 | La Palmera     | 1972 - 1991 | No hay outliers | No hay outliers | No hay outliers |      |
| 12010030 | Barranquillita | 1974 - 2015 | No hay outliers | No hay outliers | No hay outliers |      |
| 12010170 | Nuevo Oriente  | 1991 - 2015 | No hay outliers | No hay outliers | No hay outliers |      |
| 12015010 | Villarteaga    | 1972 - 2015 | No hay outliers | No hay outliers | No hay outliers |      |
| 12010050 | La Toscana     | 1977 - 2015 | No hay outlier  | No hay outlier  | No hay outlier  |      |
| 12010060 | La Lorena      | 1977 - 2015 | Hay outlier     | No hay outlier  | Hay outlier     | 1996 |
| 12010070 | El Casco       | 1977 - 2015 | Hay outlier     | Hay outlier     | Hay outlier     | 1996 |
| 12010080 | Sta. Isabel    | 1977 - 1994 | No hay outlier  | No hay outlier  | No hay outlier  |      |
| 12010090 | Trigana        | 1977 - 2015 | Hay outlier     | Hay outlier     | Hay outlier     | 1988 |
| 12010100 | Eupol          | 1977 - 2015 | No hay outlier  | No hay outlier  | No hay outlier  |      |
| 12010110 | Prado Mar      | 1977 - 2015 | No hay outlier  | No hay outlier  | No hay outlier  |      |
| 12010120 | Sta Martha     | 1977 - 2015 | No hav outlier  | No hav outlier  | No hav outlier  |      |





| 12015020 | Uniban          | 1977 - 2015 | No hay outlier | No hay outlier | No hay outlier |  |
|----------|-----------------|-------------|----------------|----------------|----------------|--|
| 12015070 | Apto Los Cedros | 1983 - 2015 | Hay outlier    | No hay outlier | No hay outlier |  |

#### 3.3 ANÁLISIS DE VARIABILIDAD CLIMÁTICA

La propuesta metodológica para la estimación de caudales ambientales, presentada por el Ministerio de Ambiente, Vivienda y Desarrollo territorial, sugiere clasificar los años en húmedos, promedio y secos, utilizando para ello la Tabla de Consenso Internacional de años Niño y Niña, compilada por Null (2003), a partir de los reportes de cuatro grupos de investigación estadounidenses que investigan el ENSO y que incluyen el Western Regional Climate Center (WRCC-http://www.wrcc.dri.edu/) el ClimateDiagnostic Center (CDChttp://www.cdc.noaa.gov/) ClimatePrediction (CPCel Center http://www.cpc.ncep.noaa.gov/) y el Multivariate ENSO index (propuesto por el CDC http://www.cdc.noaa.gov/people/klaus.wolter/MEI/ ). Sin embargo, es de recordar que ambas fases del ENSO inician en la primavera boreal (finales de marzo, comienzos de abril), y por ello que en el presente trabajo se ha considerado el uso del Índice Oceánico Niño

(http://www.cpc.ncep.noaa.gov/products/analysis\_monitoring/ensostuff/ensoyears.shtml) en la clasificación de los registros según las diferentes condiciones del ENSO.

En la Figura 3-2 se presentan los resultados de la clasificación de los caudales para la estación limnimétrica Apartadó (12017060) en función de los estados del sistema ENSO (El Niño, Normal, o El Niño), los resultados indican que dicho sistema solo afecta la amplitud, mas no la fase, de los caudales medios mensuales. Los resultados determinan que la influencia del ENSO sobre la zona de estudio es débil, a diferencia de la región Andina y el occidente del país en donde el efecto del fenómeno de La Niña se traduce en una marcada disminución en la magnitud de los caudales, El Niño por su parte aumenta de los caudales.

Comentado [ACZ1]: Verificar







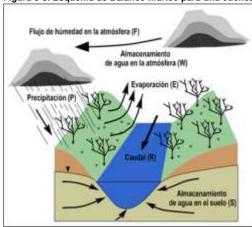
El Niño Neutral La Niffa 9 8 Caudat (m³/s) 0

Figura 3-2. Efecto de la variabilidad climática sobre los caudales en el río Apartadó

#### 3.4 BALANCE HIDROCLIMÁTICO

En el proceso de planificación de los recursos naturales, específicamente en la ordenación del recurso hídrico, es fundamental estimar los caudales que produce naturalmente una cuenca con el menor grado de incertidumbre posible, ya que dichos caudales definen en gran medida las potencialidades y las restricciones en cuanto al aprovechamiento hídrico se refiere.

Los caudales medios definen la oferta del recurso hídrico a largo plazo y por tanto las condiciones promedio de disponibilidad. La evaluación de caudales medios en una cuenca está sujeta a diferentes variables intrínsecas como: la geomorfología, precipitación, evapotranspiración, tipos y usos de suelo, entre otras. El método más utilizado para su estimación es el de balance hidrológico de largo plazo, en el cual la validez y precisión están ligadas a los mapas de precipitación y evapotranspiración, con los cuales se construye dicho balance.


### 3.4.1 Balance hídrico de Largo Plazo

Para el balance hidrológico se utilizan las ecuaciones de conservación de masa de agua en un sistema o volumen de control. En este caso, el volumen de control considerado está conformado por las columnas de agua y suelo, donde la frontera horizontal está definida por la divisoria de la cuenca; el borde inferior de la columna de suelo es un estrato impermeable y el borde superior de la columna atmosférica es su tapa.









La Figura 3-3 muestra un esquema del volumen de control donde se indican las variables del sistema. Las variables P, E, F y R tienen dimensiones de longitud por unidad de tiempo, o caudal por unidad de área; mientras que W y S tienen dimensiones de longitud, o sea, volumen por unidad de área.

Caudal Medio = 
$$\int_{Area} [P(x, y) - E(x, y)] dA$$
 (3-1)

El caudal medio se obtiene mediante diferenciales de área del tamaño de los píxeles del MDE. Así, para cada píxel en el interior de la cuenca se estima E y P, se evalúa la ecuación y su resultado se multiplica por el área del píxel, obteniendo así el volumen de agua que el píxel aporta durante el intervalo de tiempo dado, un año en este caso. La integración sobre toda la cuenca estima el volumen total de agua que sale de la cuenca durante el mismo período de tiempo, este valor se convierte finalmente a m³/s para obtener el caudal medio. A continuación, se describe la obtención de los mapas requeridos para la realización del cálculo del balance hidrológico a largo plazo.

### 3.4.2 Precipitación media anual

A partir de la información de precipitación disponible en la zona de estudio relacionada con la cuenca del río Apartadó, en el PORH del río se realizó la construcción de un campo de precipitación media multianual. Este análisis consistió en realizar la interpolación de los valores de precipitación media multianual en cada una de las estaciones disponibles. En la Figura 3-4 se presenta el campo de precipitación, el cual fue extraído del estudio del Plan de ordenamiento del recurso hídrico de los principales tributarios del río León, de conformidad con la guía técnica para la formulación de planes de ordenamiento del recurso





hídrico (2014), se determina una precipitación media multianual de 2528 mm/año sobre el río Apartadó.

Figura 3-4. Mapa de precipitación para la cuenca del río Apartadó Salida cartográfica: DESARROLLAR EL ALCANCE TÉCNICO DE LA REGLAMENTACIÓN DEL USO DE LAS AGUAS DEL RÍO APARTADÓ Y PRINCIPALES TRIBUTARIOS PRECIPITACIÓN MEDIA ANUAL UNIDAD HIDROGRÁFICA RÍO APARTADO (1201-09) Escala 1:200 000 1 040 000 1 050 000 1 000 000 LEYENDA Isoyeta (mm/año) UH río Apartadó (1201-09) Drenaje sencillo Drenaje doble Precipitación (mm/año) Máx: 3405 Min: 2087 1 040 000 1 050 000 1 060 000





#### 3.4.3 Estimación de los campos de evapotranspiración

La evapotranspiración es uno de los componentes más importantes del balance hídrico. Representa la cantidad de agua saliente del sistema hacia la atmósfera en forma de vapor de agua, por una combinación de la evaporación física y de la transpiración de la vegetación. La evapotranspiración depende fundamentalmente de condiciones climáticas que a su vez son función de las características físicas de la atmósfera que se encuentra cerca al suelo y a la vegetación, además depende de la calidad del agua y área de la superficie del agua.

Para el cálculo de esta variable existen varios métodos empíricos, la mayoría de ellos basados en fórmulas que han sido obtenidas en condiciones climáticas diferentes a las tropicales. Para el presente estudio se utilizó el método propuesto por Thornthwaite, dado que presenta los menores errores de balance regional según el estudio del Plan de ordenamiento del recurso hídrico de los principales tributarios del río León, de conformidad con la guía técnica para la formulación de planes de ordenamiento del recurso hídrico (2014). En dicho estudio se estimó la evapotranspiración por diferentes métodos y se confrontó con la medida a través de las estaciones climatológicas, dicha comparación se presenta en la Figura 3-5, donde se demuestra que el método de Thornthwaite presenta el menor error de balance.

90% 80% 70% E 50% 40% 30% 10% 0% -10% MAETR HIJ THE - CH

Figura 3-5. Validación del modelo de balance hídrico para la zona de estudio

Fuente: PORH río Apartadó 2014.

## Ecuación de Thornthwaite

1. Se calcula un "índice de calor mensual" (i) a partir de la temperatura media mensual (t):

$$i = \left(\frac{t}{5}\right)^{1,514}$$

2. Se calcula el índice de calor anual (I) sumando los 12 valores calóricos mensuales:

$$I = \sum_{i} i$$

3. Se calcula la ETP mensual "sin corregir" mediante la siguiente fórmula:





$$ETP_{\sin corregir} = 16\left(10\frac{t}{I}\right)^a$$

Donde:

ETP sin corregir = ETP mensual mm/mes, para meses de 30 días y 12 horas

de sol (teóricas)

t = Temperatura media mensual, °C

I = índice de calor anual, obtenido en el punto 2

 $a=(675*10^{-9}*I^3) - (771*10^{-7}*I^2) + (1792*10^{-5}*I) + (0.49239)$ 

#### Corrección de la Evapotranspiración

$$ETP = ETP_{\sin corrección} * F$$

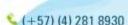
Dónde:

ETP = Evapotranspiración corregida F = Factor de corrección de Thornthwaite

Donde, ETP es la evapotranspiración potencial (mm/año). La evapotranspiración potencial se transforma a evapotranspiración real mediante la expresión de Budyko, la cual se presenta en la siguiente ecuación.

$$ETR = \left\{ ETP * P * \tanh\left(\frac{P}{ETP}\right) * \left[1 - \cosh\left(\frac{ETP}{P}\right) + \sinh\left(\frac{ETP}{P}\right)\right] \right\}^{1/2}$$

Donde, ETR es la evapotranspiración real (mm/año), ETP es la evapotranspiración potencial (mm/año) P es la precipitación media en la cuenca (mm/año). Los resultados obtenidos para la evapotranspiración real en la cuenca del río Apartadó se presentan en la Figura 3-6. Se obtiene un valor medio de1378 mm/año de evapotranspiración real.



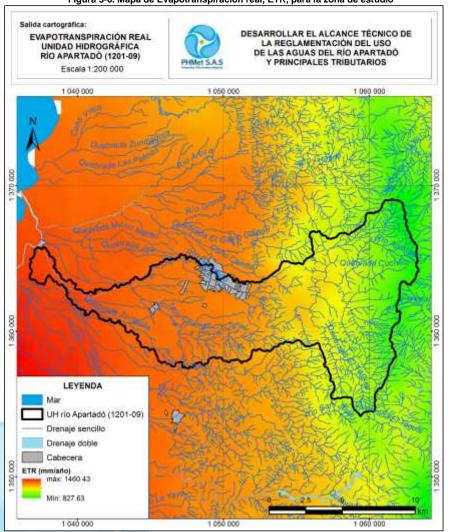










Figura 3-6. Mapa de Evapotranspiración real, ETR, para la zona de estudio







#### 3.5 MODELO LLUVIA ESCORRENTÍA

La aplicación del modelo de tanques realizada en el PORH del río Apartadó (2014) consistió en procesos de calibración en una cuenca donde se conocen con antelación los valores de precipitación y escorrentía. Para el caso el caso del río Apartadó, se utilizó la estación Apartadó (12017060) como cuenca de calibración. En el análisis realizado en el PORH no fue posible realizar validación del modelo de tanques ya que no existe disponibilidad de otra estación de medición de caudal a cercanías de la cuenca.

A continuación, se presenta la información del modelo de tanques, tomada del del *Plan de* ordenamiento del recurso hídrico de los principales tributarios del río León, de conformidad con la guía técnica para la formulación de planes de ordenamiento del recurso hídrico (2014)

#### 3.5.1 Descripción del Modelo

Para la simulación de caudales mínimos puntos no instrumentados de las cuencas se utiliza el modelo de tanques agregado lineal (Vélez J., 2001) a escala diaria. Este modelo cuenta con 7 parámetros de calibración, representados en propiedades físicas del suelo; además se considera como parámetro a ser calibrado los tiempos de residencia del agua en las diferentes capas de suelo. Dada la naturaleza de los parámetros de calibración, el ajuste del modelo representa de mejor manera los caudales mínimos, razón por la que se implementa este método para la estimación de estos caudales relacionados con diferentes periodos de retorno.

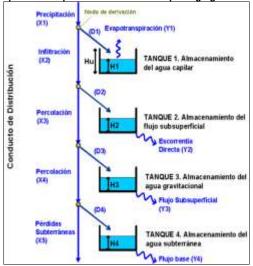

En el modelo, la producción de escorrentía se basa en balance hídrico en la cuenca, asumiendo que el agua se distribuye en cuatro tanques o niveles de almacenamiento conectados entre sí, en donde cada uno de estos tanques representan las diferentes partes del suelo y subsuelo que aportan a la escorrentía, como puede observarse en la Figura 3-7.







Figura 3-7. Descripción conceptual del modelo de tanques agregado lineal (Vélez J., 2001)



Tanque 1: Almacenamiento Capilar en el Suelo: Representa el agua que transita por la cuenca y que sólo sale de ella por evapotranspiración, por lo tanto, no hace parte de la escorrentía. Este almacenamiento se refiere a la interceptación, la detención de agua en charcos y el agua que se retiene en el suelo debido a fuerzas capilares.

Tanque 2: Almacenamiento del Flujo Superficial: En este almacenamiento se representa el agua que es susceptible a infiltrarse a un nivel inferior o que fluye por la ladera (escorrentía directa). Se supone que la capa superior del suelo tiene una conductividad hidráulica Ks representativa o característica y que se asocia al tipo de suelo y a su estructura, lo cual está relacionando la cobertura vegetal, el uso y manejo del suelo.

Tanque 3: Almacenamiento de Agua Gravitacional en la Capa Superior del Suelo: Este almacenamiento representa al agua almacenada en la capa superior del suelo mientras fluye lentamente hacia la red de drenaje, se desarrolla inicialmente sobre una capa delgada que fluye lateralmente hacia abajo por el interior de esta capa hasta que sale a los elementos de la red de drenaje.

Tanque 4: Almacenamiento Subterráneo: Se representa por un tanque donde se considera el almacenamiento del aqua gravitacional mientras fluye a través del interior del suelo hacia la red de drenaje, en lo que se podría considerar como el acuífero, y donde sale a formar el flujo base.





#### 3.5.2 Información de entrada

La calidad de la información utilizada en el modelo para la calibración de los parámetros repercute directamente en la calidad de los resultados del modelo en cuencas donde no se cuente con registros históricos de caudal. Entre las variables de entrada que el modelo requiere se encuentran: La evapotranspiración potencial, la precipitación diaria, caudal diario, etc. A continuación, se hace una descripción de cómo se obtiene cada una de estas variables.

Área de la cuenca: Conocida la ubicación de cada estación de medición de caudales sobre su respectiva corriente, se hace uso del programa HidroSig 4.0 y las direcciones de flujo para obtener el valor del área de cada cuenca.

Caudal diario: Es una de las variables más importantes en conjunto con la precipitación en la etapa de la calibración del modelo. Aunque para calibrar el modelo no se exige una cantidad mínima de años, cuanto más largo sea el período de calibración serán más confiables los resultados, en este caso la estación 12017060 Apartadó cuenta con una longitud de 29 años (1984-2012). Para realizar la calibración no se requiere completar los datos faltantes en la serie de caudales.

Precipitación diaria: Además de la calidad y longitud de los registros de las series de precipitación, otro criterio para la selección de las series de precipitación utilizadas es la ubicación de las estaciones. Se trata de hacer uso de estaciones ubicadas dentro de la cuenca trazada para cada modelo, sin embargo, esto no es siempre posible por lo que es necesaria la utilización de estaciones en cuencas cercanas que den cuenta de la variabilidad espacio-temporal de la precipitación en la zona.

Evaporación potencial: La evaporación se calcula usando el método de Thornthwaite-Budyko en función de la precipitación media mensual, temperatura media mensual y temperatura media anual de los resultados de la deriva externa Chelsa, la cual permitió obtener las mejores aproximaciones.

### 3.5.3 Parámetros y calibración del modelo

Parámetros hidráulicos: En cuanto a los parámetros hidráulicos se tienen el almacenamiento capilar del suelo, la conductividad del suelo en su capa superficial e inferior; el tiempo medio de residencia del flujo superficial, subterráneo y del flujo base. Cada uno de estos parámetros tiene un intervalo de variación, el rango de variación de estos parámetros se ha definido con base en trabajos previos y los reportes de la literatura científica (Correa & Vélez, 2001) (Jaramillo, Vélez, & Vélez, 2003), éstos se muestran en la Tabla 3-7.





Tabla 3-7. Intervalos aproximados de variación de los parámetros hidráulicos del modelo

| si valos aproximados de variación de los parame        | 110311 | iui auiic |
|--------------------------------------------------------|--------|-----------|
| Parámetros Hidráulicos                                 | Min    | Max       |
| Almacenamiento capilar [mm]                            | 50.0   | 250.0     |
| Conductividad capa superior [mm/día]                   | 7.5    | 30.0      |
| Conductividad capa inferior [mm/día]                   | 2.5    | 10.0      |
| Perdidas subterráneas [mm]                             | 0.0    | 0.0       |
| Tiempo medio de residencia flujo superficial [días]    | 0.5    | 2.0       |
| Tiempo medio de residencia flujo subsuperficial [días] | 2.5    | 10.0      |
| Tiempo medio de residencia flujo base [días]           | 50.0   | 200.0     |

Otros parámetros del modelo: Son los parámetros correspondientes a la evaporación real y a la infiltración de la cuenca: Exponente de infiltración y de evaporación. A diferencia de los parámetros hidráulicos del modelo, los exponentes de evaporación y de infiltración han sido explorados de manera más amplia por los diferentes autores y el rango de variación de cada uno de éstos no es tan amplio, tal como se observa en la Tabla 3-8, y de los cuales ya algunos autores recomiendan dichos valores.

Tabla 3-8. Rango de variación de otros parámetros del modelo de tanques

| Otros parámetros del modelo               | Min  | Max |
|-------------------------------------------|------|-----|
| Exponente infiltración (Se recomienda 2)  | 1    | 3   |
| Exponente evaporación (Se recomienda 0.7) | 0,25 | 1,5 |

Condiciones iniciales: Las condiciones iniciales de almacenamiento de cada uno de los tanques, se obtienen conociendo las condiciones hidráulicas del terreno, la calidad y textura (Tabla 3-9).

Tabla 3-9. Condiciones iniciales usadas en cada uno de los tanques

| Almacenamiento Capilar                             | T1 |
|----------------------------------------------------|----|
| Almacenamiento Agua superficial                    | T2 |
| Almacenamiento Gravitacional Z Superior            | T3 |
| Almacenamiento Gravitacional Z Inferior (acuífero) | T4 |

Para la calibración del modelo se observa la correspondencia entre los datos históricos de caudales y los datos simulados. Durante la calibración se debe entender que la componente fuerte del modelo son los caudales mínimos, los cuales son el objetivo de los análisis presentados en este capítulo, por lo que, al momento de realizar la calibración de cada uno de estos parámetros, las recesiones de ambas series (histórica y simulada) deben ser lo más similares posibles. De la misma manera en la curva de duración de caudales simulada y observada es importante que los caudales correspondientes a probabilidades de excedencia entre 50 y 95 % sean lo más similares posible.

Para la estimación de los errores de calibración de los modelos se calculan cinco indicadores básicos como son: error porcentual en el balance cuyo optimo es 0%, coeficiente de eficiencia del modelo de Nash-Sutcliffe cuyo óptimo es 100%, raíz del error cuadrático medio tradicional (RMSE) cuyo óptimo es 0 m³/s, coeficiente de eficiencia del modelo de Nash-Sutcliffe para la raíz cuadrada de los caudales (que califica mejor los caudales mínimos) cuyo óptimo es 100% y la raíz del error cuadrático medio para la raíz





cuadrada de los caudales (que califica mejor los caudales mínimos) cuyo óptimo es también 0 m³/s (Amaya, Restrepo, Vélez, Vélez, & Álvarez, 2009).

## 3.5.4 Resultados de la calibración

Los resultados de la calibración para la estación 12017060 Apartadó se muestran en la Tabla 3-10.

Tabla 2-10 Parámetros de calibración

| Tabla 3-10. Parametros de calibración                  |             |  |  |  |  |  |
|--------------------------------------------------------|-------------|--|--|--|--|--|
| Río Apartadó                                           |             |  |  |  |  |  |
| Periodo de Calibración                                 | 1984 - 2012 |  |  |  |  |  |
| Años de calibración                                    | 29.00       |  |  |  |  |  |
| Área de la Cuenca [km²]                                | 91.36       |  |  |  |  |  |
| Parámetros de calibración                              |             |  |  |  |  |  |
| Almacenamiento Capilar [mm/día]                        | 58.00       |  |  |  |  |  |
| Conductividad Capa Superior [mm/día]                   | 3.50        |  |  |  |  |  |
| Conductividad Capa Inferior [mm/día]                   | 3.30        |  |  |  |  |  |
| Perdidas Subterráneas [mm]                             | 1.00        |  |  |  |  |  |
| Tiempo Medio de Residencia Flujo Superficial [días]    | 5.00        |  |  |  |  |  |
| Tiempo Medio de Residencia Flujo Subsuperficial [días] | 6.00        |  |  |  |  |  |
| Tiempo Medio de Residencia Flujo Base [días]           | 150.00      |  |  |  |  |  |
| Condiciones iniciales                                  |             |  |  |  |  |  |
| Almacenamiento Capilar – T1                            | 25.00       |  |  |  |  |  |
| Almacenamiento Agua superficial – T2                   | 5.00        |  |  |  |  |  |
| Almacenamiento Gravitacional Z Sup – T3                | 10.0        |  |  |  |  |  |
| Almacenamiento Gravitacional Z Inf (acuífero) – T4     | 215.00      |  |  |  |  |  |
| Otros parámetros del modelo                            |             |  |  |  |  |  |
| Exponente infiltración                                 | 2.00        |  |  |  |  |  |
| Exponente evaporación                                  | 0.80        |  |  |  |  |  |
|                                                        |             |  |  |  |  |  |

En la Figura 3-8 se muestra la serie gráfica real y simulada del caudal medio diario para la estación 12017060 Apartadó y en la Figura 3-9 las curvas de duración correspondientes.

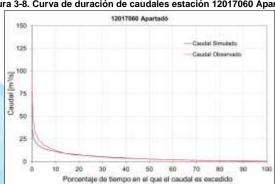



Figura 3-8. Curva de duración de caudales estación 12017060 Apartadó

Fuente: PORH río Apartadó 2014.





Figura 3-9. Serie de caudales observados y simulados estación 12017060 Apartadó Calibración estación 12017060 Apartadó (río Apartadó) 150 125 100 Caudal [m<sup>2</sup>/s] 75 50 Caudal Observado Caudal Simulado Precipitación Media 400 500 25 31/12/1986 30/12/1987 30/12/1987 30/12/1989 30/12/1991 29/12/1994 29/12/1994 28/12/1995 28/12/1995 28/12/1996 28/12/1999 28/12/2000 27/12/2000 27/12/2000 27/12/2000 27/12/2000 27/12/2000 27/12/2000 27/12/2000 27/12/2000 27/12/2000 27/12/2000 26/12/2009 26/12/2009 26/12/2009 26/12/2009 26/12/2009 26/12/2009 26/12/2009

Los valores calculados para los indicadores básicos de los errores de calibración del modelo de tanques se presentan la Tabla 3-11.

Tabla 3-11. Indicadores de calibración del modelo de tanques

| 12017060 Apartado |
|-------------------|
| Río Apartadó      |
| 9.88              |
| 7.33              |
| 12.60             |
| 7.06              |
| 4.56              |
|                   |

## 3.5.5 Validación de los resultados de los parámetros de calibración

Para realizar la validación de los resultados es necesario contar con por lo menos dos (2) estaciones de registro, en este caso no es posible realizar la validación debido a la escaza información disponible, se cuenta únicamente con información histórica de una estación de caudal medio diario (localizada en la parte media de la cuenca), lo que imposibilita llevar a cabo la validación entre estaciones.

## 3.6 SIMULACIÓN DE SERIES DE CAUDALES MEDIOS DIARIOS

Con el objeto de estimar la oferta hídrica total y disponible, incluyendo el caudal ambiental, a nivel de cuenca, subcuenca y puntos de monitoreo en la cuenca del río Apartadó, se generan series de caudales a escala diaria utilizando el modelo de tanques calibrado para el río, utilizando los datos de precipitación existentes en las unidades de análisis. La





información necesaria para la generación de las series sintéticas correspondientes a las series de precipitación desde el 01/01/1984 hasta 31/12/2002, contando además con el área aferente de la cuenca, las subcuencas y los diferentes puntos de monitoreo, la altura media sobre el nivel del mar y la precipitación media multianual de cada unidad de análisis.

## 3.6.1 Influencia de las estaciones de precipitación.

Con el ánimo de tener en cuenta la variabilidad espacial de la precipitación se crearon los polígonos de Thiessen con las estaciones utilizas en la simulación a fin de determinar el área de influencia de cada estación y su efecto sobre las diferentes subcuencas. El peso final que de las diversas estaciones en cada simulación tiene por objeto procurar que el promedio multianual de la precipitación que entra a la cuenca sea igual al valor medio multianual estimado a partir del mapa de precipitación, como se presenta en la Figura 3-10.







Figura 3-10. Polígonos de Thiessen la influencia de precipitación para el Modelo Lluvia-Escorrentía

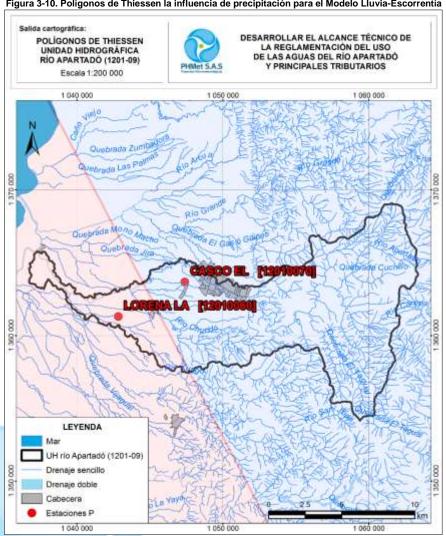







Tabla 3-12. Definición de los usuarios de la cuenca del río Apartadó

| ID      | Evnodiente             | Razón social/                                  | Coord        | enadas        | Q otorg. | Tipo       |
|---------|------------------------|------------------------------------------------|--------------|---------------|----------|------------|
| ID      | Expediente             | Nombre                                         | Latitud (N)  | Long (W)      | LPS      | Uso        |
| PJ_01   | 200-16-51-02-0089-2015 | RESCIA S.A.                                    | 7° 50' 49.2" | 76° 38' 35.6" | 0.5      | Doméstico  |
| PJ_02   | 030205/99              | Fanny Stella Trujillo Rojas                    | 7° 52' 16.5" | 76° 38' 5.8"  | 5        | Industrial |
| PJ_03   | 200-16-51-02-0219-2016 | INVERAGRO EL cambulo SAS                       | 7° 53' 11.7" | 76° 39' 52.6" | 3        | Industrial |
| PJ_04   | 200-16-51-02-0222-2016 | AGROPECUARIA GRUPO 20                          | 7° 51' 18.8" | 76° 37' 44.3" | 3        | Industrial |
| PJ_05   | 200-16-51-02-0116-2014 | INVERSIONES CABO DE HORNOS S.A.S.              | 7° 52' 10.0" | 76° 38' 56.0" | 2.9      | Industrial |
| PJ_06   | 200-165101-497/09      | María Magdalena Ochoa Espinal - Finca Don Rafa | 7° 50' 2.2"  | 76° 39' 37.5" | -        | Sin info.  |
| PJ_07   | 160101-162/08          | Makaira S.A.                                   | 7° 52' 10.5" | 76° 36' 6.3"  | 28       | Industrial |
| PJ_08   | 200-16-51-02-0409-2010 | Bananeras La Suiza S.A.                        | 7° 52' 54.8" | 76° 38' 54.1" | 2.5      | Industrial |
| PJ_09   | 200-16-51-02-0245-2016 | BANANERAS ARISTIZABAL S.A.S.                   | 7° 52' 10.5" | 76° 36' 45.7" | 3        | Industrial |
| PJ_10   | 200165102-059/13       | Aguas Regionales EPM S.A.S.                    | 7° 51' 23.8" | 76° 35' 44.8" | 345      | Doméstico  |
| PJ_11   | 160101-194/07          | Plantaciones Churidó Ltda.                     | 7° 52' 48.5" | 76° 40' 56.6" | 50       | Agrícola   |
| PJ_12   | Informal               | Junta de acción comunal vereda La Balsa        | 7° 54' 9.0"  | 76° 33' 39.0" | -        | Doméstico  |
| PJ_13   | 200165102-0184-2016    | PLANTIOS S.A.S.                                | 7° 51' 21.4" | 76° 39' 8.5"  | 3        | Industrial |
| PJ_14   | 200-16-51-02-0292-2016 | Agropecuaria Los Cunas SAS                     | 7° 50' 26.2" | 76° 40' 25.8" | 5        | Industrial |
| PJ_15   | 200165102-059/14       | Agrícola Santamaria SAS                        | 7° 53' 2.0"  | 76° 43' 57.0" | 7        | Industrial |
| PJ_16   | 200-16-51-02-0329-2018 | INVERSIONES GARCIA ZABALA S.A.S                | 7° 52' 31.3" | 76° 37' 58.7" | 3        | Industrial |
| PJ_17   | 200-16-51-02-0137-2018 | CULTIVOS TROPICANA S.A.S                       | 7° 51' 20.0" | 76° 41' 45.1" | 3.7      | Industrial |
| PJ_18_1 | 200-16-51-02-0332-2018 | Acueducto multiveredal San José de Apartadó    | 7° 54' 9.0"  | 76° 33' 58.0" | 4.1      | Doméstico  |
| PJ_18_2 | Informal               | Acueducto multiveredal San José de Apartadó    | 7° 54' 9.0"  | 76° 33' 39.0" | -        | Doméstico  |
| PN_01   | 160101-112/03          | Juan Guillermo Mejía Lenz                      | 7° 50' 7.3"  | 76° 39' 50.1" | 4.3      | Pecuario   |
| PN_02   | 200-16-51-02-0123-2013 | Jorge Iván Zanches Diez                        | 7° 52' 41.0" | 76° 35' 23.0" | 1        | Industrial |
| PN_03   | 200-16-51-02-0298-2016 | Luis Gonzalo Giraldo Aguirre                   | 7° 50' 15.8" | 76° 36' 43.7" | 10       | Sin info.  |

Comentado [ACZ2]: No se nombran en el texto





#### Tabla 3-13. Codificación y subcuencas del río Apartadó

| Código Subcuenca |  |  |  |  |  |  |  |  |
|------------------|--|--|--|--|--|--|--|--|
|                  |  |  |  |  |  |  |  |  |
| do               |  |  |  |  |  |  |  |  |
|                  |  |  |  |  |  |  |  |  |
|                  |  |  |  |  |  |  |  |  |
|                  |  |  |  |  |  |  |  |  |
|                  |  |  |  |  |  |  |  |  |
|                  |  |  |  |  |  |  |  |  |
|                  |  |  |  |  |  |  |  |  |
|                  |  |  |  |  |  |  |  |  |
|                  |  |  |  |  |  |  |  |  |







#### 3.6.2 Parámetros de simulación

Los diferentes parámetros necesarios para la generación de las series de caudales medios diarios a nivel de cuenca, subcuencas y puntos de monitoreo se presentan desde la Tabla 3-14 y la Tabla 3-15.

Tabla 3-14. Parámetros de interpolación de lluvia para modelo de tanques para los usuarios del río Apartadó

| Usuario | Nombre                                         |       | ETR      | ETP      | Р        | 12010070 | 12010060  |
|---------|------------------------------------------------|-------|----------|----------|----------|----------|-----------|
| USUATIO | Nottible                                       | (km²) | (mm/año) | (mm/año) | (mm/año) | El Casco | La Lorena |
| PJ_01   | RESCIA S.A.                                    | 13.05 | 1166     | 1469     | 2633     | 0.94     | -         |
| PJ_02   | Fanny Stella Trujillo Rojas                    | 0.64  | 1196     | 1508     | 2628     | 0.93     | -         |
| PJ_03   | INVERAGRO EL cambulo SAS                       | 0.88  | 1210     | 1515     | 2607     | 0.91     | -         |
| PJ_04   | AGROPECUARIA GRUPO 20                          | 0.13  | 1191     | 1503     | 2637     | 0.93     | -         |
| PJ_05   | INVERSIONES CABO DE HORNOS S.A.S.              | 1.93  | 1202     | 1510     | 2595     | 0.91     | -         |
| PJ_06   | María Magdalena Ochoa Espinal - Finca Don Rafa | 0.02  | 1216     | 1511     | 2723     | -        | 0.93      |
| PJ_07   | Makaira S.A.                                   | 81.12 | 977      | 1211     | 2413     | 0.93     | -         |
| PJ_08   | Bananeras La Suiza S.A.                        | 0.72  | 1202     | 1511     | 2614     | 0.92     | -         |
| PJ_09   | BANANERAS ARISTIZABAL S.A.S.                   | 89.83 | 991      | 1230     | 2431     | 0.93     | -         |
| PJ_10   | Aguas Regionales EPM S.A.S.                    | 78.08 | 971      | 1202     | 2407     | 0.93     | -         |
| PJ_11   | Plantaciones Churidó Ltda.                     | 36.02 | 1192     | 1496     | 2625     | 0.85     | 0.09      |
| PJ_12   | Junta de acción comunal vereda La Balsa        | 0.14  | 1119     | 1401     | 2591     | 0.94     | -         |
| PJ_13   | PLANTIOS S.A.S.                                | 21.03 | 1179     | 1483     | 2638     | 0.94     | -         |
| PJ_14   | Agropecuaria Los Cunas SAS                     | 0.21  | 1223     | 1513     | 2726     | -        | 0.93      |
| PJ_15   | Agrícola Santamaria SAS                        | 0.86  | 1267     | 1523     | 2993     | -        | 1.02      |
| PJ_16   | INVERSIONES GARCIA ZABALA S.A.S                | 0.53  | 1197     | 1509     | 2633     | 0.93     | -         |
| PJ_17   | CULTIVOS TROPICANA S.A.S                       | 3.40  | 1232     | 1518     | 2715     | -        | 0.92      |
| PJ_18_1 | Acueducto multiveredal San José de Apartadó    | 0.06  | 1038     | 1513     | 2591     | 0.98     | -         |
| PJ_18_2 | Acueducto multiveredal San José de Apartadó    | 1.23  | 1019     | 1253     | 2566     | 0.97     |           |
| PN_01   | Juan Guillermo Mejía Lenz                      | 0.14  | 1217     | 1511     | 2730     | 0.93     | -         |
| PN_02   | Jorge Iván Zanches Diez                        | 0.14  | 1119     | 1401     | 2591     | 0.94     | -         |
| PN_03   | Luis Gonzalo Giraldo Aguirre                   | 0.19  | 1143     | 1436     | 2640     | 0.95     | -         |





Tabla 3-15. Parámetros de interpolación de lluvia para modelo de tanques para las subcuencas del río Apartadó

| 0          | Name to an                | Área   | ETR      | ETP      | Р        | 12010070 | 12010060  |
|------------|---------------------------|--------|----------|----------|----------|----------|-----------|
| Subcuenca  | Nombre                    | (km²)  | (mm/año) | (mm/año) | (mm/año) | El Casco | La Lorena |
| 1201-09-01 | Río Apartadó              | 47.51  | 1180     | 1471     | 2643     | 0.59     | 0.36      |
| 1201-09-02 | Directos del rio Apartado | 36.02  | 1192     | 1496     | 2625     | 0.85     | 0.09      |
| 1201-09-03 | Río Churido               | 19.13  | 999      | 1246     | 2408     | 0.92     | -         |
| 1201-09-04 | Quebrada El Tagual        | 17.10  | 933      | 1150     | 2363     | 0.93     | -         |
| 1201-09-05 | Quebrada NN1              | 16.44  | 901      | 1103     | 2343     | 0.93     | -         |
| 1201-09-06 | Quebrada Cuchillo         | 13.55  | 957      | 1176     | 2431     | 0.95     | -         |
| 1201-09-07 | Río Apartadó - Alto       | 5.02   | 1099     | 1369     | 2591     | 0.95     | -         |
| 1201-09    | Quebrada NN2              | 154.86 | 1082     | 1345     | 2527     | 0.82     | 0.13      |







La oferta hídrica detallada se presenta en el Anexo 1.

Tabla 3-16. Caudales promedio a partir de las series sintéticas para los usuarios de la cuenca del río Apartadó

| Tabia   | Tabla 3-16. Caudales promedio a partir de las series sinteticas para los usuarios de la cuenca del no Apartado |                                                |                            |        |        |             |  |  |
|---------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|--------|--------|-------------|--|--|
|         |                                                                                                                | Usuarios                                       | Oferta hídrica total (LPS) |        |        |             |  |  |
| Código  | Expediente                                                                                                     | Nombre                                         | Normal                     | Seco   | Verano | Verano seco |  |  |
| PJ_01   | 200-16-51-02-0089-2015                                                                                         | RESCIA S.A.                                    | 570.6                      | 446.7  | 209.6  | 102.0       |  |  |
| PJ_02   | 030205/99                                                                                                      | Fanny Stella Trujillo Rojas                    | 27.2                       | 21.3   | 10.0   | 4.9         |  |  |
| PJ_03   | 200-16-51-02-0219-2016                                                                                         | INVERAGRO EL cambulo SAS                       | 36.5                       | 28.5   | 13.5   | 6.6         |  |  |
| PJ_04   | 200-16-51-02-0222-2016                                                                                         | AGROPECUARIA GRUPO 20                          | 5.6                        | 4.4    | 2.1    | 1.0         |  |  |
| PJ_05   | 200-16-51-02-0116-2014                                                                                         | INVERSIONES CABO DE HORNOS S.A.S.              | 80.1                       | 62.5   | 29.6   | 14.5        |  |  |
| PJ_06   | 200-165101-497/09                                                                                              | María Magdalena Ochoa Espinal - Finca Don Rafa | 0.8                        | 0.6    | 0.3    | 0.1         |  |  |
| PJ_07   | 160101-162/08                                                                                                  | Makaira S.A.                                   | 3470.4                     | 2714.0 | 1277.6 | 623.1       |  |  |
| PJ_08   | 200-16-51-02-0409-2010                                                                                         | Bananeras La Suiza S.A.                        | 30.1                       | 23.5   | 11.1   | 5.4         |  |  |
| PJ_09   | 200-16-51-02-0245-2016                                                                                         | BANANERAS ARISTIZABAL S.A.S.                   | 3853.7                     | 3014.2 | 1418.3 | 691.5       |  |  |
| PJ_10   | 200165102-059/13                                                                                               | Aguas Regionales EPM S.A.S.                    | 3340.3                     | 2612.2 | 1229.7 | 599.8       |  |  |
| PJ_11   | 160101-194/07                                                                                                  | Plantaciones Churidó Ltda.                     | 1541.2                     | 1204.9 | 587.9  | 282.0       |  |  |
| PJ_12   | Informal                                                                                                       | Junta de acción comunal vereda La Balsa        | 6.0                        | 4.7    | 2.2    | 1.1         |  |  |
| PJ_13   | 200165102-0184-2016                                                                                            | PLANTIOS S.A.S.                                | 914.2                      | 715.6  | 336.1  | 163.6       |  |  |
| PJ_14   | 200-16-51-02-0292-2016                                                                                         | Agropecuaria Los Cunas SAS                     | 9.9                        | 7.7    | 4.1    | 1.2         |  |  |
| PJ_15   | 200165102-059/14                                                                                               | Agrícola Santamaria SAS                        | 45.2                       | 35.4   | 18.4   | 5.2         |  |  |
| PJ_16   | 200-16-51-02-0329-2018                                                                                         | INVERSIONES GARCIA ZABALA S.A.S                | 22.7                       | 17.8   | 8.4    | 4.1         |  |  |
| PJ_17   | 200-16-51-02-0137-2018                                                                                         | CULTIVOS TROPICANA S.A.S                       | 154.0                      | 119.6  | 63.4   | 18.5        |  |  |
| PJ_18_1 | 200-16-51-02-0332-2018                                                                                         | Acueducto multiveredal San José de Apartadó    | 2.9                        | 2.3    | 1.1    | 0.5         |  |  |
| PJ_18_2 | Informal                                                                                                       | Acueducto multiveredal San José de Apartadó    | 56.8                       | 44.6   | 20.8   | 10.0        |  |  |
| PN_01   | 160101-112/03                                                                                                  | Juan Guillermo Mejía Lenz                      | 6.6                        | 5.1    | 2.7    | 0.8         |  |  |
| PN_02   | 200-16-51-02-0123-2013                                                                                         | Jorge Iván Zanches Diez                        | 6.0                        | 4.7    | 2.2    | 1.1         |  |  |
| PN 03   | 200-16-51-02-0298-2016                                                                                         | Luis Gonzalo Giraldo Aguirre 8.7 6.8 3.2       |                            |        | 1.5    |             |  |  |

Comentado [ACZ4]: Revisar

Comentado [ACZ5]: No se mencionan en el texto







Tabla 3-17. Caudales promedio a partir de las series sintéticas para las subcuencas del río Apartadó

| - | Comentado | [ACZ6] | : No s | se mencionan | en el texto |
|---|-----------|--------|--------|--------------|-------------|
|---|-----------|--------|--------|--------------|-------------|

|            | Oferta hídrica total (LPS) |        |        |        |             |  |
|------------|----------------------------|--------|--------|--------|-------------|--|
| Código     | Código Nombre              |        | Seco   | Verano | Verano seco |  |
| 1201-09-01 | Directos del rio Apartado  | 2196.3 | 1734.2 | 856.0  | 375.0       |  |
| 1201-09-02 | Río Churido                | 1631.6 | 1270.0 | 592.0  | 276.0       |  |
| 1201-09-03 | Quebrada El Tagual         | 851.8  | 662.3  | 298.0  | 142.0       |  |
| 1201-09-04 | Quebrada NN1               | 772.6  | 601.1  | 270.0  | 128.0       |  |
| 1201-09-05 | Quebrada Cuchillo          | 749.6  | 583.6  | 262.0  | 124.0       |  |
| 1201-09-06 | Río Apartadó - Alto        | 631.0  | 491.8  | 220.0  | 104.0       |  |
| 1201-09-07 | Quebrada NN2               | 237.0  | 184.7  | 83.0   | 39.0        |  |
| 1201-09    | Río Apartadó               | 7072.8 | 5514.7 | 2593.0 | 1205.0      |  |

#### 3.7 OFERTA HÍDRICA TOTAL

Según la Resolución 865 de 2004, la oferta hídrica de una cuenca es el volumen disponible para satisfacer la demanda generada por las actividades sociales y económicas del hombre. Cuando existe información histórica confiable de los caudales con series extensas. En tal sentido el caudal medio multianual de cada cuenca representa la oferta hídrica en condiciones normales.

La oferta hídrica superficial para el estudio representa el volumen de agua que escurre por la superficie e integra los sistemas de drenaje superficial. Esta variable se analiza para unidades temporales anuales y mensuales en condiciones hidrológicas promedio, húmedas y año típico seco mediante el uso de las series sintéticas de caudales generadas a partir del modelo lluvia escorrentía.

En el Anexo3-1 se presentan los datos de oferta hídrica a nivel de subcuenca y usuarios para el río Apartadó para los 12 meses del año en condiciones contrastantes secas, normales y húmedas. Estos resultados permiten describir el cambio de la oferta hídrica en función del ciclo anual. A nivel de Usuarios, la oferta hídrica en condiciones secas es 23% menor en comparación a condiciones normales y 82% menor en condiciones de un verano seco. Lo cual nos ayuda a entender la variabilidad temporal de la oferta total del recurso agua en la cuenca del río Apartadó.

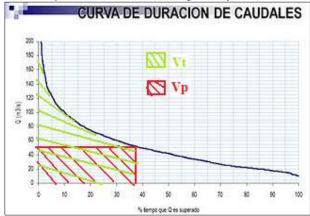
## 3.8 ÍNDICE DE ARIDEZ E ÍNDICE DE RETENCIÓN Y REGULACIÓN HÍDRICA.

#### 3.8.1 Índices de retención y regulación

La obtención del índice de regulación y retención hídrica (IRH) se basa fundamentalmente en la curva de duración de caudales medios para los caudales medios diarios. Su estimación resulta de la relación por el área que se encuentra por debajo de la línea de caudal medio y la correspondiente área total por debajo de la curva de duración de caudales diarios. La expresión matemática de cálculo es la siguiente:

Comentado [ACZ7]: Revisar porque no parecer ser coherente dentro del texto.

Comentado [ACZ8]: Verificar que si coincidan los númeross






$$IRH = \frac{V_p}{V_T} \qquad (3-21)$$

Siendo  $V_{\scriptscriptstyle p}$  el volumen representado por el área que se encuentra por debajo de la línea de caudal medio y  $\mathit{V_{\scriptscriptstyle T}}$  el volumen representado por el área bajo la cuerva de duración como se presenta en la Figura 3-11.

Figura 3-11. Esquema cálculo del índice de regulación y retención hídrica, IRH



El resumen el IRH para los usuarios del río Apartadó se presenta en la Tabla 3-18 y para las subcuencas en la Tabla 3-19.

Tabla 3-18. IRH de los usuarios del río Apartadó

|        | Usuario                                        |       | IRH          |
|--------|------------------------------------------------|-------|--------------|
| Código | Nombre                                         | Valor | Calificación |
| PJ_01  | RESCIA S.A.                                    | 0.589 | Bajo         |
| PJ_02  | Fanny Stella Trujillo Rojas                    | 0.588 | Bajo         |
| PJ_03  | INVERAGRO EL cambulo SAS                       | 0.587 | Bajo         |
| PJ_04  | AGROPECUARIA GRUPO 20                          | 0.588 | Bajo         |
| PJ_05  | INVERSIONES CABO DE HORNOS S.A.S.              | 0.587 | Bajo         |
| PJ_06  | María Magdalena Ochoa Espinal - Finca Don Rafa | 0.558 | Bajo         |
| PJ_07  | Makaira S.A.                                   | 0.588 | Bajo         |
| PJ_08  | Bananeras La Suiza S.A.                        | 0.587 | Bajo         |
| PJ_09  | BANANERAS ARISTIZABAL S.A.S.                   | 0.588 | Bajo         |
| PJ_10  | Aguas Regionales EPM S.A.S.                    | 0.588 | Bajo         |
| PJ_11  | Plantaciones Churidó Ltda.                     | 0.597 | Bajo         |
| PJ_12  | Junta de acción comunal vereda La Balsa        | 0.589 | Bajo         |
| PJ_13  | PLANTIOS S.A.S.                                | 0.588 | Bajo         |
| PJ_14  | Agropecuaria Los Cunas SAS                     | 0.558 | Bajo         |
| PJ_15  | Agrícola Santamaria SAS                        | 0.562 | Bajo         |
| PJ_16  | INVERSIONES GARCIA ZABALA S.A.S                | 0.588 | Bajo         |





|         | Usuario                                     |       |      |  |  |  |
|---------|---------------------------------------------|-------|------|--|--|--|
| Código  | Código Nombre                               |       |      |  |  |  |
| PJ_17   | CULTIVOS TROPICANA S.A.S                    | 0.558 | Bajo |  |  |  |
| PJ_18_1 | Acueducto multiveredal San José de Apartadó | 0.590 | Bajo |  |  |  |
| PJ_18_2 | Acueducto multiveredal San José de Apartadó | 0.590 | Bajo |  |  |  |
| PN_01   | Juan Guillermo Mejía Lenz                   | 0.558 | Bajo |  |  |  |
| PN_02   | Jorge Iván Zanches Diez                     | 0.589 | Bajo |  |  |  |
| PN_03   | Luis Gonzalo Giraldo Aguirre                | 0.589 | Bajo |  |  |  |

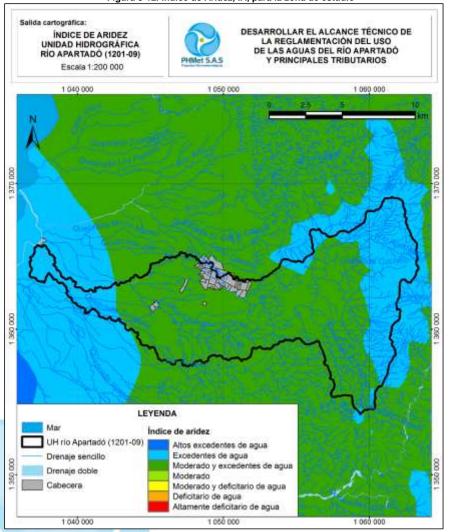
Tabla 3-19. IRH de las subcuencas del río Apartadó

|               | Subcuenca                 |       | IRH          |
|---------------|---------------------------|-------|--------------|
| Código Nombre |                           | Valor | Calificación |
| 1201-09-01    | Directos del rio Apartado | 0.611 | Bajo         |
| 1201-09-02    | Río Churido               | 0.597 | Bajo         |
| 1201-09-03    | Quebrada El Tagual        | 0.587 | Bajo         |
| 1201-09-04    | Quebrada NN1              | 0.588 | Bajo         |
| 1201-09-05    | Quebrada Cuchillo         | 0.588 | Bajo         |
| 1201-09-06    | Río Apartadó - Alto       | 0.589 | Bajo         |
| 1201-09-07    | Quebrada NN2              | 0.589 | Bajo         |
| 1201-09       | Río Apartadó              | 0.600 | Bajo         |

## 3.8.2 Índice de Aridez

Se define el índice de Aridez (IA) a nivel de cuenca, subcuenca y usuario. Este índice es una característica cualitativa del clima, que permite medir el grado de suficiencia o insuficiencia de la precipitación para el sostenimiento de los ecosistemas de una región, identificando áreas deficitarias o de excedentes de agua, calculadas a partir del balance hídrico superficial.

$$IA = \frac{ETP - ETR}{ETP}$$


Los resultados del índice para los usuarios se presentan en el Anexo 3-2. Los resultados del Índice de Aridez nos permiten situar a la cuenca del río Apartadó dentro de moderado a excedentes en la mayoría de su extensión, como se presenta en la Figura 3-12. Lo cual refleja disponibilidad del recurso agua en proporción a la evaporación potencial y real de la cuenca para satisfacer de las demandas hídricas ambientales.

Comentado [ACZ9]: Revisar





Figura 3-12. Índice de Aridez, IA, para la zona de estudio







#### 3.9 CAUDAL AMBIENTAL

#### 3.9.1 Caudales ambientales según la Resolución 865 de 2004

Según la Resolución 865 de 2004, el IDEAM ha adoptado como caudal mínimo ecológico un valor aproximado del 25% del caudal medio mensual multianual más bajo de la corriente en estudio. Esta será la primera propuesta de caudal ambiental y deberá calcularse a nivel de subcuencas y puntos de monitoreo utilizando los caudales medios diarios simulados mediante el modelo lluvia escorrentía calibrado y validado en el presente capítulo.

## 3.9.2 Estimación de los caudales ambientales según la propuesta del Estudio Nacional de Agua - ENA-2010

Según el estudio Nacional del Agua-2010, el análisis estadístico y el conocimiento del experto permiten definir el valor característico para la determinación del caudal ambiental. Usando los resultados de 423 curvas de duración de caudales medios diarios en todo el país, se ha desarrollado una metodología para la estimación de los caudales ambientales en Colombia en función de la autorregulación de la cuenca y la variación de los caudales a lo largo del año. El resultados de dicho análisis permite identificar dos esquemas para la estimación del caudal ambiental, un grupo corresponde a cuencas con autorregulación alta y poca variabilidad de caudales, en el cual se considera que el valor típico del caudal ambiental corresponde al Q85% de la curva de duración (caudal igualado o excedido el 85% del tiempo), éste valor característico se aplica a estaciones con un IRH superior a 0,7 (alta retención y regulación), el segundo grupo corresponde a estaciones con valores de IRH inferiores a 0,7, para las cuales se asigna el valor característico Q75% de la curva de duración de caudales medios diarios en la determinación del caudal ambiental.

## 3.9.3 Índices hidrológicos 7Q10 y Q95%

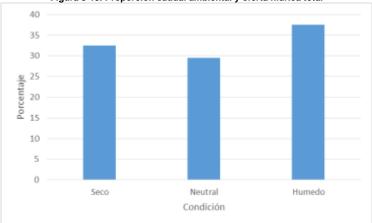
Entre los principales indicadores hidrológicos de caudal ambiental están los índices 7Q10 y Q95% estimados a partir de los registros diarios homogéneos, consistentes y casi completos de caudales medios diarios. En Colombia, el Ministerio de Medio Ambiente ha puesto en consideración del país la "METODOLÓGIA PARA LA ESTIMACIÓN Y EVALUACIÓN DEL CAUDAL AMBIENTAL EN PROYECTOS QUE REQUIEREN LICENCIA" cuyos criterios y lineamientos proponen la estimación preliminar de los caudales ambientales a partir de las siguientes premisas de cálculo:

Estrictamente hablando el cálculo del índice 7Q10, propuesto por Chiang y Johnson (1976), se realiza a partir de caudales medios mínimos diarios. Sin embargo, y considerando que estos registros normalmente no se encuentran disponibles, se propone realizar su estimación a partir de los datos de caudales medios diarios simulados a nivel de subcuenca y puntos de monitoreo mediante el modelo lluvia escorrentía calibrado y validado para la cuenca. Para ello se debe considerar la totalidad del registro diario homogéneo, consistente





completo, aplicar un promedio móvil de ventana 7 días (fácilmente aplicable usando las herramientas estadísticas de Excel) para estimar el caudal promedio semanal, y luego construir la serie anual de excedencias con los registros mínimos semanales de cada año. Seguidamente, realizar el análisis de frecuencias de eventos mínimos extremos para la serie anual antes construida, para la distribución de probabilidad de mejor ajuste (utilizando por ejemplo software libre de análisis de frecuencias como Distribuciones de Probabilidad Aplicadas en la Hidrología (DISPAH, González, 1998), FREQ (Kite, 1988), entre otros) y seleccionar el caudal correspondiente al período de retorno de 10 años, que resulta ser el 7Q10.


- ii) El cálculo del Q95% usualmente se ha propuesto en la literatura realizarlo a partir de la totalidad del registro histórico diario (caso de la mayoría de las metodologías que adoptan este índice), o calcularlo mes a mes, como lo propone el método del Northern Great Plains ResourceProgram (NGPRP, 1974). En la propuesta aquí presentada, se sugiere adoptar el método NGPRP, con una variación, que incluye el cálculo del índice Q95% a partir de la construcción de las curvas de duración de caudales (CDC) medios diarios (para meses de enero a diciembre) y para cada una de las tres condiciones hidrológicas (húmeda, promedio y seca), agrupando los registros diarios con base en la clasificación propuesta en el Paso 4. La construcción de la CDC es un procedimiento hidrológico rutinario que no se detalla en este documento, y que es descrito en detalle por Searcy (1959) y por Vogel y Fennessey (1995).
- iii) Como resultado del cálculo del 7Q10 y del Q95% se obtiene la primera propuesta de caudales mensuales ambientales, discriminada por mes y para cada una de las tres condiciones hidrológicas (húmeda, promedio y seca), la cual, de acuerdo con el criterio de consistencia con estas dos metodologías internacionalmente aceptadas, resultaría para cada uno de los 36 casos (3 condiciones hidrológicas x 12 meses) como el valor máximo entre el 7Q10 y el Q95% (max (7Q10, Q95%)) para el correspondiente mes y condición hidrológica.

El análisis detallado de los resultados de caudal ambiental derivados de cada una de las metodologías anteriormente explicadas permitió determinar la proporción del caudal ambiental con respecto a la oferta hídrica total para la correspondiente condición, húmeda, seca y neutral, según se presenta en la Figura 3-13.









Los resultados de los caudales ambientales realizados por las tres metodologías a nivel de cuenca, subcuenca y usuarios del río Apartadó se encuentran en la Tabla 3-20 y la Tabla 3-21.





Tabla 3-20. Caudales ambientales para los usuarios de la cuenca del río Apartadó

|         | Usuarios/subcuencas Caudal ambiental (LPS) |                                                |        |        |        |             |
|---------|--------------------------------------------|------------------------------------------------|--------|--------|--------|-------------|
| Código  | Expediente                                 | Nombre                                         | Normal | Seco   | Verano | Verano seco |
| PJ_01   | 200-16-51-02-0089-2015                     | RESCIA S.A.                                    | 195.7  | 162.5  | 76.1   | 80.6        |
| PJ_02   | 030205/99                                  | Fanny Stella Trujillo Rojas                    | 9.2    | 7.8    | 3.7    | 3.9         |
| PJ_03   | 200-16-51-02-0219-2016                     | INVERAGRO EL cambulo SAS                       | 12.3   | 10.4   | 5.0    | 5.3         |
| PJ_04   | 200-16-51-02-0222-2016                     | AGROPECUARIA GRUPO 20                          | 1.9    | 1.6    | 0.8    | 0.8         |
| PJ_05   | 200-16-51-02-0116-2014                     | INVERSIONES CABO DE HORNOS S.A.S.              | 27.4   | 22.8   | 11.0   | 9.7         |
| PJ_06   | 200-165101-497/09                          | María Magdalena Ochoa Espinal - Finca Don Rafa | 0.2    | 0.2    | 0.1    | 0.1         |
| PJ_07   | 160101-162/08                              | Makaira S.A.                                   | 1168.8 | 989.4  | 469.9  | 498.1       |
| PJ_08   | 200-16-51-02-0409-2010                     | Bananeras La Suiza S.A.                        | 10.1   | 8.6    | 4.1    | 4.4         |
| PJ_09   | 200-16-51-02-0245-2016                     | BANANERAS ARISTIZABAL S.A.S.                   | 1297.6 | 1098.6 | 520.8  | 552.0       |
| PJ_10   | 200165102-059/13                           | Aguas Regionales EPM S.A.S.                    | 1125.0 | 952.3  | 452.3  | 479.4       |
| PJ_11   | 160101-194/07                              | Plantaciones Churidó Ltda.                     | 541.6  | 462.6  | 226.0  | 236.5       |
| PJ_12   | Informal                                   | Junta de acción comunal vereda La Balsa        | 2.0    | 1.7    | 0.8    | 0.8         |
| PJ_13   | 200165102-0184-2016                        | PLANTIOS S.A.S.                                | 307.9  | 260.5  | 122.5  | 129.7       |
| PJ_14   | 200-16-51-02-0292-2016                     | Agropecuaria Los Cunas SAS                     | 2.7    | 2.2    | 1.2    | 1.1         |
| PJ_15   | 200165102-059/14                           | Agrícola Santamaria SAS                        | 12.6   | 10.3   | 4.9    | 4.6         |
| PJ_16   | 200-16-51-02-0329-2018                     | INVERSIONES GARCIA ZABALA S.A.S                | 7.7    | 6.5    | 3.1    | 3.3         |
| PJ_17   | 200-16-51-02-0137-2018                     | CULTIVOS TROPICANA S.A.S                       | 42.0   | 34.4   | 18.2   | 16.9        |
| PJ_18_1 | 200-16-51-02-0332-2018                     | Acueducto multiveredal San José de Apartadó    | 1.0    | 0.8    | 0.4    | 0.4         |
| PJ_18_2 | Informal                                   | Acueducto multiveredal San José de Apartadó    | 19.3   | 16.2   | 7.3    | 7.7         |
| PJ_19   | Informal                                   | Juan Guillermo Mejía Lenz                      | 2.0    | 1.7    | 0.8    | 0.8         |
| PN_01   | 160101-112/03                              | Jorge Iván Zanches Diez                        | 1.8    | 1.5    | 0.8    | 0.7         |
| PN_02   | 200-16-51-02-0123-2013                     | Luis Gonzalo Giraldo Aguirre                   | 2.0    | 1.7    | 0.8    | 0.8         |
| PN_03   | 200-16-51-02-0298-2016                     | RESCIA S.A.                                    | 2.9    | 2.5    | 1.1    | 1.2         |





Tabla 3-21. Caudales ambientales para las subcuencas del río Apartadó

|            | Caudal ambiental (LPS)    |        |        | LPS)   |             |
|------------|---------------------------|--------|--------|--------|-------------|
| Código     | Nombre                    | Normal | Seco   | Verano | Verano seco |
| 1201-09    | Río Apartadó              | 2374.3 | 2037.5 | 981.0  | 885.0       |
| 1201-09-01 | Directos del rio Apartado | 780.8  | 668.3  | 319.0  | 298.0       |
| 1201-09-02 | Río Churido               | 541.7  | 462.6  | 224.0  | 198.0       |
| 1201-09-03 | Quebrada El Tagual        | 269.9  | 229.1  | 110.0  | 96.0        |
| 1201-09-04 | Quebrada NN1              | 245.4  | 207.8  | 99.0   | 86.0        |
| 1201-09-05 | Quebrada Cuchillo         | 237.8  | 201.4  | 95.0   | 83.0        |
| 1201-09-06 | Río Apartadó - Alto       | 200.8  | 169.5  | 79.0   | 69.0        |
| 1201-09-07 | Quebrada NN2              | 75.3   | 63.8   | 29.0   | 26.0        |

#### 3.10 CAUDALES MÍNIMOS

La estimación de caudales mínimos a nivel de cuenca y usuarios del caño Maizaro se realizó mediante análisis de frecuencias de las series generadas a partir del modelo de Tanques calibrado para la zona de estudio. Para estimar los caudales mínimos para diferentes periodos de retorno a partir de la ecuación presentada por Chow et al. (1994), la cual se presenta a continuación:

$$Q_{tr} = \mu_{min} + Ktr * \sigma_{min}$$
 (3-22)

Siendo  $Q_{Tr}$  el caudal mínimo para un período de retorno Tr, $\mu_{min}$ es la media de los caudales mínimos de cada año simulado, $\sigma_{min}$ es la desviación estándar de los caudales mínimos de cada año simulado y K<sub>Tr</sub> recibe el nombre de factor de frecuencia que depende de la función de distribución de probabilidad de valores extremos elegidos y del período de retorno.

Para la estimación del factor de frecuencia, K<sub>Tr.</sub> se requieren tres funciones de distribución de probabilidades las cuales se describen a continuación:

• Gumbel: 
$$Ktr = -0.45 - 0.7797 * ln\{-ln(F(x))\}$$
 (3-23)

• Normal: 
$$Ktr = Zt$$
, (3-24)

• Log-Normal = 
$$Ktr = \frac{exp\{Zt*\sqrt{[Ln(1+Cvx^2)]}-0.5*Ln(1+Cvx^2)\}-1}{Cvx}$$
 (3-25)

Donde F(x) depende del evento extremo, para mínimos  $F(x) = \frac{1}{Tr}$ , y Ztes Variable Normal estandarizada asociada a una probabilidad F(x).

A partir de esta ecuación se obtuvieron los caudales mínimos para los periodos de retorno de 2.33, 5, 10, 25, 50 y 100 años, con las 3 distribuciones de probabilidad anteriormente mencionadas. Los resultados se muestran en la Tabla 3-22 y la Tabla 3-23.





Tabla 3-22. Caudales mínimos (en LPS) para los usuarios de la cuenca del río Apartadó
Usuario | Distribución | Caudal según Tr (periodo de retorno) (LPS)

| Usuario  | Distribución        |        |              |        | r (periodo de retorno) (LPS) |        |        |        |
|----------|---------------------|--------|--------------|--------|------------------------------|--------|--------|--------|
|          |                     | 1.5    | 2.33         | 5      | 10                           | 25     | 50     | 100    |
| PJ_01    | GUMBEL              | 68.44  | 58.23        | 49.30  | 44.33                        | 39.68  | 36.97  | 34.71  |
|          | NORMAL              | 71.59  | 60.74        | 48.94  | 41.10                        | 32.75  | 27.35  | 22.50  |
|          | LOGNORMAL           | 69.27  | 58.65        | 48.92  | 43.38                        | 38.16  | 35.12  | 32.60  |
| PJ_02    | GUMBEL              | 3.32   | 2.82         | 2.39   | 2.14                         | 1.92   | 1.79   | 1.68   |
|          | NORMAL              | 3.47   | 2.94         | 2.37   | 1.99                         | 1.58   | 1.32   | 1.08   |
|          | LOGNORMAL           | 3.36   | 2.84         | 2.37   | 2.10                         | 1.84   | 1.70   | 1.57   |
| PJ_03    | GUMBEL              | 4.52   | 3.84         | 3.25   | 2.91                         | 2.60   | 2.42   | 2.27   |
| 1 0_00   | NORMAL              | 4.73   | 4.01         | 3.22   | 2.70                         | 2.14   | 1.78   | 1.46   |
|          | LOGNORMAL           | 4.73   | 3.87         | 3.22   | 2.85                         | 2.51   | 2.31   | 2.14   |
| PJ_04    | GUMBEL              | 0.68   | 0.57         | 0.49   | 0.44                         | 0.39   | 0.36   | 0.34   |
| FJ_04    | NORMAL              | 0.00   |              | 0.49   | 0.40                         | 0.39   | 0.30   | 0.34   |
|          |                     | 0.71   | 0.60<br>0.58 | 0.48   | 0.40                         | 0.32   | 0.27   | 0.22   |
| PJ 05    | LOGNORMAL<br>GUMBEL | 9.94   | 8.45         | 7.14   | 6.41                         | 5.73   |        |        |
| PJ_05    |                     |        |              |        |                              |        | 5.33   | 5.00   |
|          | NORMAL              | 10.40  | 8.81         | 7.08   | 5.94                         | 4.71   | 3.92   | 3.21   |
|          | LOGNORMAL           | 10.06  | 8.50         | 7.08   | 6.27                         | 5.51   | 5.07   | 4.70   |
| PJ_06    | GUMBEL              | 0.09   | 0.07         | 0.05   | 0.04                         | 0.03   | 0.03   | 0.03   |
|          | NORMAL              | 0.10   | 0.08         | 0.05   | 0.04                         | 0.02   | 0.01   | 0.00   |
|          | LOGNORMAL           | 0.09   | 0.07         | 0.05   | 0.04                         | 0.04   | 0.03   | 0.03   |
| PJ_07    | GUMBEL              | 422.24 | 359.04       | 303.75 | 272.97                       | 244.17 | 227.41 | 213.39 |
|          | NORMAL              | 441.74 | 374.59       | 301.48 | 252.99                       | 201.27 | 167.86 | 137.81 |
|          | LOGNORMAL           | 427.32 | 361.55       | 301.41 | 267.14                       | 234.88 | 216.14 | 200.56 |
| PJ_08    | GUMBEL              | 3.71   | 3.15         | 2.66   | 2.39                         | 2.14   | 1.99   | 1.87   |
|          | NORMAL              | 3.88   | 3.29         | 2.64   | 2.22                         | 1.76   | 1.47   | 1.20   |
|          | LOGNORMAL           | 3.75   | 3.17         | 2.64   | 2.34                         | 2.06   | 1.89   | 1.76   |
| PJ_09    | GUMBEL              | 468.01 | 397.99       | 336.74 | 302.63                       | 270.73 | 252.16 | 236.63 |
| . 0_00   | NORMAL              | 489.61 | 415.22       | 334.22 | 280.50                       | 223.20 | 186.19 | 152.90 |
|          | LOGNORMAL           | 473.65 | 400.78       | 334.14 | 296.17                       | 260.41 | 239.65 | 222.38 |
| PJ 10    | GUMBEL              | 406.41 | 345.58       | 292.36 | 262.74                       | 235.02 | 218.89 | 205.39 |
| 1 3_10   | NORMAL              | 425.18 | 360.55       | 290.18 | 243.50                       | 193.73 | 161.57 | 132.65 |
|          | LOGNORMAL           | 411.31 | 348.00       | 290.10 | 257.13                       | 226.07 | 208.04 | 193.04 |
| PJ_11    | GUMBEL              | 205.85 | 175.01       | 148.02 | 133.00                       | 118.95 | 110.77 | 103.92 |
| FJ_II    |                     | 215.37 |              |        | 123.25                       | 98.01  |        | 67.04  |
|          | NORMAL              |        | 182.59       | 146.92 |                              |        | 81.70  |        |
| D 1 40   | LOGNORMAL           | 208.32 | 176.23       | 146.88 | 130.16                       | 114.43 | 105.29 | 97.69  |
| PJ_12    | GUMBEL              | 0.72   | 0.61         | 0.52   | 0.47                         | 0.42   | 0.39   | 0.36   |
|          | NORMAL              | 0.75   | 0.64         | 0.51   | 0.43                         | 0.34   | 0.29   | 0.24   |
|          | LOGNORMAL           | 0.73   | 0.62         | 0.51   | 0.46                         | 0.40   | 0.37   | 0.34   |
| PJ_13    | GUMBEL              | 110.07 | 93.64        | 79.26  | 71.26                        | 63.77  | 59.41  | 55.77  |
|          | NORMAL              | 115.14 | 97.68        | 78.67  | 66.06                        | 52.62  | 43.93  | 36.12  |
|          | LOGNORMAL           | 111.40 | 94.30        | 78.65  | 69.73                        | 61.33  | 56.45  | 52.39  |
| PJ_14    | GUMBEL              | 1.11   | 0.87         | 0.66   | 0.54                         | 0.43   | 0.36   | 0.31   |
|          | NORMAL              | 1.19   | 0.93         | 0.65   | 0.46                         | 0.26   | 0.13   | 0.01   |
|          | LOGNORMAL           | 1.10   | 0.86         | 0.66   | 0.55                         | 0.46   | 0.40   | 0.36   |
| PJ_15    | GUMBEL              | 4.72   | 3.64         | 2.70   | 2.17                         | 1.68   | 1.39   | 1.15   |
|          | NORMAL              | 5.06   | 3.91         | 2.66   | 1.83                         | 0.95   | 0.38   | -0.14  |
|          | LOGNORMAL           | 4.66   | 3.60         | 2.72   | 2.25                         | 1.85   | 1.63   | 1.45   |
| PJ 16    | GUMBEL              | 2.77   | 2.35         | 1.99   | 1.79                         | 1.60   | 1.49   | 1.40   |
| . 00     | NORMAL              | 2.90   | 2.46         | 1.98   | 1.66                         | 1.32   | 1.10   | 0.90   |
|          | LOGNORMAL           | 2.80   | 2.37         | 1.98   | 1.75                         | 1.54   | 1.42   | 1.31   |
| PJ_17    | GUMBEL              | 17.50  | 13.68        | 10.33  | 8.47                         | 6.73   | 5.71   | 4.87   |
| F-J_17   |                     |        |              |        |                              |        |        |        |
|          | NORMAL              | 18.68  | 14.62        | 10.20  | 7.26                         | 4.13   | 2.11   | 0.29   |
| D 1 40 1 | LOGNORMAL           | 17.34  | 13.55        | 10.36  | 8.67                         | 7.17   | 6.34   | 5.68   |
| PJ_18_1  | GUMBEL              | 0.34   | 0.29         | 0.25   | 0.22                         | 0.20   | 0.18   | 0.17   |
|          | NORMAL              | 0.36   | 0.30         | 0.24   | 0.21                         | 0.16   | 0.14   | 0.11   |
|          | LOGNORMAL           | 0.34   | 0.29         | 0.24   | 0.22                         | 0.19   | 0.18   | 0.16   |
| PJ_18_2  | GUMBEL              | 6.58   | 5.61         | 4.75   | 4.28                         | 3.83   | 3.58   | 3.36   |
|          | NORMAL              | 6.88   | 5.85         | 4.72   | 3.97                         | 3.17   | 2.66   | 2.19   |
|          | LOGNORMAL           | 6.66   | 5.65         | 4.72   | 4.19                         | 3.69   | 3.39   | 3.15   |
| PN_01    | GUMBEL              | 0.74   | 0.58         | 0.44   | 0.36                         | 0.28   | 0.24   | 0.20   |





| Usuario | Distribución | Caudal según Tr (periodo de retorno) (LPS) |      |      |      |      |      |      |
|---------|--------------|--------------------------------------------|------|------|------|------|------|------|
|         |              | 1.5                                        | 2.33 | 5    | 10   | 25   | 50   | 100  |
|         | NORMAL       | 0.79                                       | 0.62 | 0.43 | 0.31 | 0.17 | 0.09 | 0.01 |
|         | LOGNORMAL    | 0.74                                       | 0.57 | 0.44 | 0.37 | 0.30 | 0.27 | 0.24 |
| PN_02   | GUMBEL       | 0.72                                       | 0.61 | 0.52 | 0.47 | 0.42 | 0.39 | 0.36 |
|         | NORMAL       | 0.75                                       | 0.64 | 0.51 | 0.43 | 0.34 | 0.29 | 0.24 |
|         | LOGNORMAL    | 0.73                                       | 0.62 | 0.51 | 0.46 | 0.40 | 0.37 | 0.34 |
| PN_03   | GUMBEL       | 1.03                                       | 0.88 | 0.74 | 0.67 | 0.60 | 0.56 | 0.52 |
|         | NORMAL       | 1.08                                       | 0.91 | 0.74 | 0.62 | 0.49 | 0.41 | 0.34 |
|         | LOGNORMAL    | 1.04                                       | 0.88 | 0.74 | 0.65 | 0.58 | 0.53 | 0.49 |

Tabla 3-23, Caudales mínimos (en LPS) para las subcuenças del río Apartadó

| Subcuenca  | Distribución | ,      |        |        | (periodo |        |        |        |
|------------|--------------|--------|--------|--------|----------|--------|--------|--------|
|            |              | 1.5    | 2.33   | 5      | 10       | 25     | 50     | 100    |
| 1201-09-01 | GUMBEL       | 307.13 | 263.13 | 224.64 | 203.22   | 183.17 | 171.50 | 161.74 |
|            | NORMAL       | 320.70 | 273.95 | 223.07 | 189.31   | 153.31 | 130.05 | 109.13 |
|            | LOGNORMAL    | 311.16 | 265.22 | 222.89 | 198.61   | 175.62 | 162.21 | 151.02 |
| 1201-09-02 | GUMBEL       | 205.85 | 175.01 | 148.02 | 133.00   | 118.95 | 110.77 | 103.92 |
|            | NORMAL       | 215.37 | 182.59 | 146.92 | 123.25   | 98.01  | 81.70  | 67.04  |
|            | LOGNORMAL    | 208.32 | 176.23 | 146.88 | 130.16   | 114.43 | 105.29 | 97.69  |
| 1201-09-03 | GUMBEL       | 98.89  | 84.04  | 71.05  | 63.82    | 57.05  | 53.11  | 49.82  |
|            | NORMAL       | 103.47 | 87.69  | 70.52  | 59.12    | 46.97  | 39.12  | 32.07  |
|            | LOGNORMAL    | 100.07 | 84.62  | 70.50  | 62.46    | 54.89  | 50.50  | 46.85  |
| 1201-09-04 | GUMBEL       | 88.87  | 75.56  | 63.91  | 57.43    | 51.36  | 47.83  | 44.88  |
|            | NORMAL       | 92.98  | 78.83  | 63.43  | 53.22    | 42.33  | 35.29  | 28.96  |
|            | LOGNORMAL    | 89.94  | 76.09  | 63.42  | 56.20    | 49.41  | 45.47  | 42.19  |
| 1201-09-05 | GUMBEL       | 85.70  | 72.88  | 61.67  | 55.42    | 49.58  | 46.18  | 43.34  |
|            | NORMAL       | 89.65  | 76.03  | 61.21  | 51.37    | 40.88  | 34.11  | 28.01  |
|            | LOGNORMAL    | 86.73  | 73.39  | 61.19  | 54.24    | 47.69  | 43.89  | 40.73  |
| 1201-09-06 | GUMBEL       | 71.17  | 60.56  | 51.28  | 46.11    | 41.28  | 38.47  | 36.11  |
|            | NORMAL       | 74.44  | 63.17  | 50.90  | 42.76    | 34.08  | 28.47  | 23.43  |
|            | LOGNORMAL    | 72.03  | 60.99  | 50.88  | 45.12    | 39.69  | 36.54  | 33.92  |
| 1201-09-07 | GUMBEL       | 26.50  | 22.56  | 19.11  | 17.19    | 15.39  | 14.34  | 13.47  |
|            | NORMAL       | 27.72  | 23.53  | 18.96  | 15.94    | 12.71  | 10.63  | 8.75   |
|            | LOGNORMAL    | 26.82  | 22.72  | 18.96  | 16.82    | 14.80  | 13.62  | 12.65  |
| 1201-09    | GUMBEL       | 910.79 | 775.85 | 657.80 | 592.07   | 530.59 | 494.80 | 464.87 |
|            | NORMAL       | 952.42 | 809.04 | 652.95 | 549.41   | 438.99 | 367.66 | 303.50 |
|            | LOGNORMAL    | 922.00 | 781.46 | 652.70 | 579.23   | 509.96 | 469.68 | 436.18 |

## **DISPONIBILIDAD HÍDRICA**

En el presente estudio, se consideran la oferta hídrica superficial y la oferta hídrica natural disponible. Esta última resulta de sustraer a la primera el agua que garantizaría el uso para el funcionamiento de los ecosistemas, de los sistemas fluviales y -en alguna medida- un caudal mínimo para usuarios que dependen de las fuentes hídricas asociadas a estos ecosistemas. Se equipara con el caudal ambiental, que para el presente estudio fue calculado siguiendo los criterios hidrológicos presentados con antelación. En la Tabla 3-24 se presenta la oferta total y disponible para la cuenca, subcuencas y en la Tabla 3-25 a nivel Usuarios de la cuenca del río Apartadó.





Tabla 3-24. Oferta disponible para la cuenca las subcuencas del río Apartadó

|            | Subcuenca                 | Oferta hídrica disponible (LPS) |        |        |             |
|------------|---------------------------|---------------------------------|--------|--------|-------------|
| Código     | Nombre                    | Normal                          | Seco   | Verano | Verano seco |
| 1201-09-01 | Directos del rio Apartado | 1415.4                          | 1065.8 | 537.0  | 77.0        |
| 1201-09-02 | Río Churido               | 1089.9                          | 807.4  | 368.0  | 78.0        |
| 1201-09-03 | Quebrada El Tagual        | 581.9                           | 433.3  | 188.0  | 46.0        |
| 1201-09-04 | Quebrada NN1              | 527.2                           | 393.3  | 171.0  | 42.0        |
| 1201-09-05 | Quebrada Cuchillo         | 511.8                           | 382.2  | 167.0  | 41.0        |
| 1201-09-06 | Río Apartadó - Alto       | 430.2                           | 322.3  | 141.0  | 35.0        |
| 1201-09-07 | Quebrada NN2              | 161.8                           | 120.9  | 54.0   | 13.0        |
| 1201-09    | Río Apartadó              | 4698.6                          | 3477.2 | 1612.0 | 320.0       |







Tabla 3-25. Oferta disponible para los usuarios del río Apartadó

| Tabla 3-25. Oferta disponible para los usuarios del 110 Apartado |                        |                                                |        |             |            |             |  |  |
|------------------------------------------------------------------|------------------------|------------------------------------------------|--------|-------------|------------|-------------|--|--|
|                                                                  | Usua                   | arios/subcuencas                               | Ofe    | erta hidric | a disponil | ole (LPS)   |  |  |
| Código                                                           | Expediente             | Nombre                                         | Normal | Seco        | Verano     | Verano seco |  |  |
| PJ_01                                                            | 200-16-51-02-0089-2015 | RESCIA S.A.                                    | 374.8  | 284.2       | 133.5      | 21.4        |  |  |
| PJ_02                                                            | 030205/99              | Fanny Stella Trujillo Rojas                    | 18.0   | 13.5        | 6.3        | 1.0         |  |  |
| PJ_03                                                            | 200-16-51-02-0219-2016 | INVERAGRO EL cambulo SAS                       | 24.2   | 18.1        | 8.4        | 1.3         |  |  |
| PJ_04                                                            | 200-16-51-02-0222-2016 | AGROPECUARIA GRUPO 20                          | 3.7    | 2.8         | 1.3        | 0.2         |  |  |
| PJ_05                                                            | 200-16-51-02-0116-2014 | INVERSIONES CABO DE HORNOS S.A.S.              | 52.7   | 39.7        | 18.6       | 4.8         |  |  |
| PJ_06                                                            | 200-165101-497/09      | María Magdalena Ochoa Espinal - Finca Don Rafa | 0.6    | 0.4         | 0.2        | 0.0         |  |  |
| PJ_07                                                            | 160101-162/08          | Makaira S.A.                                   | 2301.6 | 1724.5      | 807.6      | 125.0       |  |  |
| PJ_08                                                            | 200-16-51-02-0409-2010 | Bananeras La Suiza S.A.                        | 20.0   | 14.9        | 7.0        | 1.1         |  |  |
| PJ_09                                                            | 200-16-51-02-0245-2016 | BANANERAS ARISTIZABAL S.A.S.                   | 2556.1 | 1915.6      | 897.5      | 139.5       |  |  |
| PJ_10                                                            | 200165102-059/13       | Aguas Regionales EPM S.A.S.                    | 2215.3 | 1659.9      | 777.4      | 120.3       |  |  |
| PJ_11                                                            | 160101-194/07          | Plantaciones Churidó Ltda.                     | 999.7  | 742.3       | 361.9      | 45.5        |  |  |
| PJ_12                                                            | Informal               | Junta de acción comunal vereda La Balsa        | 4.0    | 3.0         | 1.4        | 0.2         |  |  |
| PJ_13                                                            | 200165102-0184-2016    | PLANTIOS S.A.S.                                | 606.4  | 455.1       | 213.6      | 33.9        |  |  |
| PJ_14                                                            | 200-16-51-02-0292-2016 | Agropecuaria Los Cunas SAS                     | 7.2    | 5.5         | 2.9        | 0.1         |  |  |
| PJ_15                                                            | 200165102-059/14       | Agrícola Santamaria SAS                        | 32.6   | 25.2        | 13.5       | 0.6         |  |  |
| PJ_16                                                            | 200-16-51-02-0329-2018 | INVERSIONES GARCIA ZABALA S.A.S                | 15.1   | 11.3        | 5.3        | 0.8         |  |  |
| PJ_17                                                            | 200-16-51-02-0137-2018 | CULTIVOS TROPICANA S.A.S                       | 112.0  | 85.1        | 45.2       | 1.6         |  |  |
| PJ_18_1                                                          | 200-16-51-02-0332-2018 | Acueducto multiveredal San José de Apartadó    | 1.9    | 1.5         | 0.7        | 0.1         |  |  |
| PJ_18_2                                                          | Informal               | Acueducto multiveredal San José de Apartadó    | 37.6   | 28.5        | 13.5       | 2.3         |  |  |
| PN_01                                                            | 160101-112/03          | Juan Guillermo Mejía Lenz                      | 4.8    | 3.7         | 1.9        | 0.1         |  |  |
| PN_02                                                            | 200-16-51-02-0123-2013 | Jorge Iván Zanches Diez                        | 4.0    | 3.0         | 1.4        | 0.2         |  |  |
| PN_03                                                            | 200-16-51-02-0298-2016 | Luis Gonzalo Giraldo Aguirre                   | 5.8    | 4.3         | 2.0        | 0.3         |  |  |





